Staying healthy
that is the answer
Answer:
uryehrufurudududjehshsyshzyyxzhsu
Answer:
Anode (oxidation): Cr(s) ⇒ Cr³⁺(aq) + 3 e⁻
Cathode (reduction): Ag⁺(aq) + 1 e⁻ ⇒ Ag(s)
Explanation:
Let's consider the notation of a galvanic cell.
Cr(s) | Cr³⁺(aq) || Ag⁺(aq) | Ag(s)
On the left, it is represented the anode (oxidation) and on the right, it is represented the cathode (reduction).
The half-reactions are:
Anode (oxidation): Cr(s) ⇒ Cr³⁺(aq) + 3 e⁻
Cathode (reduction): Ag⁺(aq) + 1 e⁻ ⇒ Ag(s)
To have the global reaction, we have to multiply the reduction by 3 (so the number of electrons gained and lost are the same) and add both half-reactions.
Global reaction: Cr(s) + 3 Ag⁺(aq) ⇒ Cr³⁺(aq) + 3 Ag(s)
Answer:
No, IR should not soely be used to identify molecules
Explanation:
IR is a method that identifies the functional groups in a molecule by deducing the frequency of stretching and vibration of bonds. Each peculiar type of bond has a frequency for the vibration of each bond represented on the IR spectrum.
However, one method is never enough to identify a compound. A combination of methods must always be used to clear up ambiguities arising from overlapping IR frequencies. Also, interpretation of the nuanced peaks of the fingerprint region in IR spectra is quite challenging and only gives a fair idea of the functional groups present in the compound.
Therefore other methods such as NMR, UV-VISIBLE etc should also be involved in the identification of compounds.