Okay to find the perpendicular bisector of a segment you first need to find the slope of the reference segment.
m=(y2-y1)/(x2-x1) in this case:
m=(-5-1)/(2-4)
m=-6/-2
m=3
Now for the the bisector line to be perpendicular its slope must be the negative reciprocal of the reference segment, mathematically:
m1*m2=-1 in this case:
3m=-1
m=-1/3
So now we know that the slope is -1/3 we need to find the midpoint of the line segment that we are bisecting. The midpoint is simply the average of the coordinates of the endpoints, mathematically:
mp=((x1+x2)/2, (y1+y2)/2), in this case:
mp=((4+2)/2, (1-5)/2)
mp=(6/2, -4/2)
mp=(3,-2)
So our bisector must pass through the midpoint, or (3,-2) and have a slope of -1/3 so we can say:
y=mx+b, where m=slope and b=y-intercept, and given what we know:
-2=(-1/3)3+b
-2=-3/3+b
-2=-1+b
-1=b
So now we have the complete equation of the perpendicular bisector...
y=-x/3-1 or more neatly in my opinion :P
y=(-x-3)/3
<u>x-intercepts are found by setting y=0</u>

<em>factor out a 2</em>

<em />

<em>roots should be </em>x=-1,5
therefore,
x-intercepts are (-1,0) and (5,0)
<u>
</u><u>y-intercepts are found by setting x=0</u>


therefore,
y-intercept is (0,-10)
Based on the information provided, it follows that there are 1,728 possible seating arrangements.
<h3>How can we find the number of possible arrangements?</h3>
To find the number of arrangements in this problem situation we must take into account the following key factors:
- Chris only has 1 possible seat.
- Jo has 2 possible seats.
- Dave, Alex, and Barb have 3 possible seats.
- Gareth, Fred, and Eddie have 3 possible seats.
- There are 4 other adults who do not have a preference in seats but have the possibility of using 4 seats.
According to the above, we must use the factorization of these numbers to find out the number of possibilities we have to seat them.
<h3>What is factoring?</h3>
A factorial function is a mathematical tool that is characterized by using the exclamation mark “!” behind a number. The factorial function is used to express that the number accompanied by the symbol must be multiplied by all positive integers between that number and 1.
In accordance with the above, in the problem situation that we must solve, we must use the factorial function with the possibilities of:
- Dave, Alex and Barb: 3! = 3 × 2 × 1 = 6
- Gareth, Fred and Eddie: 3! = 3 × 2 × 1 = 6
- Other 4 adults: 4! = 4 × 3 × 2 × 1 = 24
Subsequently, to calculate the number of total possibilities of the entire group we must multiply the possibilities of each group and individual as shown below:
- Number of possibilities = 1 × 2 × 6 × 6 × 24
- Number of possibilities = 1728
Learn more about the factorial function in: brainly.com/question/16674303
Answer:
19683
Step-by-step explanation:
As the formula of the geometric sequence:

In the sequence of 1, 3, 9..., you have a1 = 1 and r = 3. Therefore:

Hope this helps!