Answer:
<u>The probability that a randomly selected boy in school can run the mile in less than 348 seconds is 1.1%.</u>
Step-by-step explanation:
1. Let's review the information provided to us to answer the question correctly:
μ of the time a group of boys run the mile in its secondary- school fitness test = 440 seconds
σ of the time a group of boys run the mile in its secondary- school fitness test = 40 seconds
2. Find the probability that a randomly selected boy in school can run the mile in less than 348 seconds.
Let's find out the z-score, this way:
z-score = (348 - 440)/40
z-score = -92/40 = -2.3
Now let's find out the probability of z-score = -2.3, using the table:
p (-2.3) = 0.0107
p (-2.3) = 0.0107 * 100
p (-2.3) = 1.1% (rounding to the next tenth)
<u>The probability that a randomly selected boy in school can run the mile in less than 348 seconds is 1.1%.</u>
A.371
b.46
i just took the test or assignment
Question is Incomplete, Complete question is given below.
Prove that a triangle with the sides (a − 1) cm, 2√a cm and (a + 1) cm is a right angled triangle.
Answer:
∆ABC is right angled triangle with right angle at B.
Step-by-step explanation:
Given : Triangle having sides (a - 1) cm, 2√a and (a + 1) cm.
We need to prove that triangle is the right angled triangle.
Let the triangle be denoted by Δ ABC with side as;
AB = (a - 1) cm
BC = (2√ a) cm
CA = (a + 1) cm
Hence,
Now We know that

So;


Now;

Also;

Now We know that




[By Pythagoras theorem]

Hence, 
Now In right angled triangle the sum of square of two sides of triangle is equal to square of the third side.
This proves that ∆ABC is right angled triangle with right angle at B.
Set up a system of equations:
B=2+3C
B+C=90
The variable B is already solved, so plug into bottom equation:
2+3C+C=90
2+4C=90
4C=88
C=22
Plug C back in:
B+22=90
B=68
So B is 68 degrees and C is 22 degrees
Hope this helped!
19 years old double her age is 24 then you subtract 5. 19