Answer:
The value of the expression given is:
Step-by-step explanation:
First, you must divide the expression in three, and to the final, you can multiply it:
- [(3^8)*(2^(-5))*(9^0)]^(-2)
- [(2^(-2))/(3^3)]^4
- 3^28
Now, we can solve each part one by one:
<em>First part.
</em>
- 3^8 = 6561
- 2^(-5) = 0.03125
- 9^0 = 1 (Whatever number elevated to 0, its value is 1)
- (6561 * 0,03125 * 1) = 205.03125
And we elevate this to -2:
- 205.03125^-2 = 2<u>.378810688*10^(-5)</u> or <u>0.00002378810688
</u>
<em>Second part.
</em>
- 2^(-2) = 0.25
- 3^3 = 27
- 0.25 / 27 = 9.259259259 * 10^(-3) or 0.00925925925925
And we elevate this to 4:
- 0.00925925925925^4 = <u>7.350298528 * 10^(-9)</u> or <u>0.000000007350298528
</u>
<em>Third Part.
</em>
- 3^28 = <u>2.287679245 * 10^13</u> or <u>22876792450000</u>
At last, we multiply all the results obtained:
- 0.00002378810688 * 0.000000007350298528 * 22876792450000 = <u>3.999999999999999999</u> approximately <u>4</u>
<u><em>We approximate the value because the difference to 4 is minimal, which could be obtained if we use all the decimals in each result</em></u>.
Answer:
6
Step-by-step explanation:
Subtract 6 which leaves u with -3p=-18 then divide by three on both sides to get p=6
Answer:
Se attached for plots and here is position of the numbers:
a. Plot 13.58 on a number line on which the long
tick marks are whole numbers.
b. Plot 0.193 on a number line on which the long
tick marks are tenths.
c. Plot 26.9999 on a number line on which the
long tick marks are thousandths.
- 26.999 < 26.9999 < 27.000