Answer:
The mean is 
The standard deviation 
Step-by-step explanation:
From the question we are told that
The data given is
Temperature Lower Limit Upper Limit Days
50-59 50 59 2
60-69 60 69 313
70-79 70 79 1419
80-89 80 89 1503
90-99 90 99 319
100-109 100 109 9
Generally the average of each limit is evaluated as
Temperature Lower Limit Upper Limit Average
Days
50-59 50 59 ( 50 + 59 )/2 =54.5 2
60-69 60 69 (60+69)/2 = 64.5 313
70-79 70 79 (70+79)/2 =74.5 1419
80-89 80 89 (80+89)/2 =84.5 1503
90-99 90 99 (90+99)/2 = 94.5 319
100-109 100 109 (100+109)/2 = 104.5 9
Generally the mean is evaluated as

=> 
=> 
Generally the standard deviation is evaluated as
![\sigma = \sqrt{ \frac{\sum[ f_i * ( x_i^2 - \= x^2)] }{\sum f_i}}](https://tex.z-dn.net/?f=%5Csigma%20%3D%20%5Csqrt%7B%20%5Cfrac%7B%5Csum%5B%20f_i%20%2A%20%28%20x_i%5E2%20-%20%5C%3D%20x%5E2%29%5D%20%7D%7B%5Csum%20f_i%7D%7D)
=> ![\sigma =\sqrt{ \frac{[2 * [(54.5)^2) - 79.7^2 ]]+[313 *[ (64.5)^2)-79.7^2] +\cdots +[9 *[ (104.5)^2)- 79.7^2] }{2 + 313 +\cdots + 9}}](https://tex.z-dn.net/?f=%5Csigma%20%3D%5Csqrt%7B%20%5Cfrac%7B%5B2%20%2A%20%5B%2854.5%29%5E2%29%20-%2079.7%5E2%20%5D%5D%2B%5B313%20%2A%5B%20%2864.5%29%5E2%29-79.7%5E2%5D%20%2B%5Ccdots%20%2B%5B9%20%2A%5B%20%28104.5%29%5E2%29-%2079.7%5E2%5D%20%20%7D%7B2%20%2B%20313%20%2B%5Ccdots%20%2B%209%7D%7D)
=> 