deceleration or rėtardation i’m pretty sure (it won’t let me say the second word but it’s correct)
Answer:
P = 17.28*10⁶ N
Explanation:
Given
L = 250 mm = 0.25 m
a = 0.54 m
b = 0.40 m
E = 95 GPa = 95*10⁹ Pa
σmax = 80 MPa = 80*10⁶ Pa
ΔL = 0.12%*L = 0.0012*0.25 m = 3*10⁻⁴ m
We get A as follows:
A = a*b = (0.54 m)*(0.40 m) = 0.216 m²
then, we apply the formula
ΔL = P*L/(A*E) ⇒ P = ΔL*A*E/L
⇒ P = (3*10⁻⁴ m)*(0.216 m²)*(95*10⁹ Pa)/(0.25 m)
⇒ P = 24624000 N = 24.624*10⁶ N
Now we can use the equation
σ = P/A
⇒ σ = (24624000 N)/(0.216 m²) = 114000000 Pa = 114 MPa > 80 MPa
So σ > σmax we use σmax
⇒ P = σmax*A = (80*10⁶ Pa)*(0.216 m²) = 17280000 N = 17.28*10⁶ N
Hydrogen bonds are too weak to bind atoms together to form molecules, but they do hold different parts of a single large molecule in a specific three-dimensional shape. The given statement is true.
<h3>What are hydrogen bonds?</h3>
A hydrogen bond is an electrostatic force of attraction among a hydrogen atom tightly attached to a more electronegative "donor" atom or group and another electronegative atom bearing a lone pair of electrons, known as the hydrogen bond acceptor.
Hydrogen bonds are too flimsy to connect atoms to form molecules, but they do hold various portions of a single large molecule together in a specific three-dimensional shape.
Thus, the given statement is true.
For more details regarding hydrogen bonding, visit:
brainly.com/question/10904296
#SPJ1
Answer: 14.5 N
Explanation: NEED SCRATCH PAPER: A flower pot weighing 42.0 N (newtons) is hung above a window by three ropes, each making an angle of 15.0 degrees with the vertical. What is the tension in each rope supporting the flower pot?
✓ 14.5 N
found it on the internet?
Answer:
True
Explanation:
Given that Power whose unit is Watt equates to one joule of work per second. It implies that Power is directly proportional to the work done and inversely proportional to the time to do the work.
Therefore, in this case, the right answer to the question is that it is TRUE that the power is inversely proportional with time