Electrostatic repulsion is the force between two charges having the same sign, that tends to separate them further. The force is proportional to the product of the charges, and inversely proportional to the square of the distance between them.
Answer:
Bounce 1 , pass 3, emb2
Explanation:
(By the way I am also doing that question on College board physics page) For the Bounce arrow, since it bumps into the object and goes back, it means now it has a negative momentum, which means a larger momentum is given to the object. P=mv, so the velocity is larger for the object, and larger velocity means a larger kinetic energy which would result in a larger change in the potential energy. Since K=0.5mv^2=U=mgh, a larger potential energy would have a larger change in height which means it has a larger angle θ with the vertical line. Comparing with the "pass arrow" and the "Embedded arrow", the embedded arrow gives the object a larger momentum, Pi=Pf (mv=(M+m)V), it gives all its original momentum to the two objects right now. (Arrow and the pumpkin), it would have a larger velocity. However for the pass arrow, it only gives partial of its original momentum and keeps some of them for the arrow to move, which means the pumpkin has less momentum, means less velocity, and less kinetic energy transferred into the potential energy, and means less change in height, less θangle. So it is Bounce1, pass3, emb2.
1) First of all, we need to find the distance between the two charges. Their distance on the xy plane is
substituting the coordinates of the two charges, we get
2) Then, we can calculate the electrostatic force between the two charges
and
, which is given by
where
is the Coulomb's constant.
Substituting numbers, we get
and the negative sign means the force between the two charges is attractive, because the two charges have opposite sign.