Answer:
0.15A
Explanation:
The parameters given are;
R=20.0 Ω
C= 2.50 μF
V= 3.00 V
f= 2.48×10^-3 Hz
Xc= 1/2πFc
Xc= 1/2×3.142 × 2.48×10^-3 × 2.5 ×10^-6
Xc= 25666824.1
Z= 1/√(1/R)^2 +(1/Xc)^2
Z= 1/√[(1/20)^2 +(1/25666824.1)^2]
Z= 1/√(2.5×10^-3) + (1.5×10^-15)
Z= 20 Ω
But
V=IZ
Where;
V= voltage
I= current
Z= impedance
I= V/Z
I= 3.00/20
I= 0.15A
Answer:
(a) W = 8.66 J
(b) Velocity = 2.40 m/s
Explanation:
(a) Work done is given as the product of force and displacement. That is:
W = F * d * cos(A)
Where F = force applied
d = distance moved
A = angle of ramp
Therefore, work done is:
W = 20 * 0.5 * cos30
W = 8.66 J
(b) Work done is equal to change in Kinetic energy. Since the initial kinetic energy is zero:
W = KE(final)
W = ½ * m * v²
Where v = final velocity
=> 8.66 = ½ * 3 * v²
v² = 5.773
v² = 2.40 m/s
Answer:
Depth of the pool, h = 4.004 cm
Explanation:
Pressure at the bottom, P = 39240 N/m²
The density of water, d = 1000 kg/m³
The pressure at the bottom is given by :
P = dgh
We need to find the depth of pool. Let h is the depth of the pool. So,


h = 4.004 m
So, the pool is 4.004 meters pool. Hence, this is the required solution.
Explanation:
Sorry I don't know the answer
Answer:
Explanation:
Angular velocity of satellite
= 2π x .01
= .02 π rad /s
Initial angular momentum
Moment of inertia x angular velocity
= 2000 x .02 π
= 125.6 unit
Linear impulse produced by each thruster
= 15 N.s
Angular impulse
= 15 x 1.5 = 22.5 unit
Total angular impulse in 30 pulses
= 22.5 x 2 x 30
1350
This angular impulse will add total angular momentum of
1350 unit
So total angular momentum after 30 pulses
= 1350 + 22.5
= 1372.5 unit
So final angular velocity
= final angular momentum / moment of inertia
= 1372.5 / 2000
= 0 .686 rad /s