Momentum is a term used to quantify the motion of an object has. It is calculated as the the product of the object's mass and the velocity. It is expressed as:
Momentum = m x v
Momentum = 50 kg x 5 m/s
Momentum = 250 kg m/s
Therefore, the correct answer is the last option.
After the collision the magnitude of the momentum of the system is Mv
Given:
mass of 1st object = M
speed of 1st object = v
mass of 2nd object = M
speed of 2nd object = 0
To Find:
magnitude of the momentum after collision
Solution: Product of the mass of a particle and its velocity. Momentum is a vector quantity; i.e., it has both magnitude and direction. Isaac Newton's second law of motion states that the time rate of change of momentum is equal to the force acting on the particle.
Applying conservation of linear momentum
Mv + M(0) = 2MV
Mv = 2MV
V = v/2
So, after collision momentum is
p = 2MV = 2xMxv/2 = Mv
So, after collision momentum is Mv
Learn more about Momentum here:
brainly.com/question/1042017
#SPJ4
Answer:
A) coil A
Explanation:
According to Faraday, Induced emf is given as;
E.M.F = ΔФ/t
ΔФ = BACosθ
where;
ΔФ is change in magnetic flux
θ is the angle between the magnetic field, B, and the normal to the loop of area A
A is the area of the loop
B is the magnetic field
From the equation above, induced emf depends on the strength of the magnetic field.
Both coils have the same area and are oriented at right angles to the field.
Coil A has a magnetic field strength of 10-T which is greater than 1 T of coil B, thus, coil A will have a greater emf induced in it.
<em>A</em> - <em>B</em> = (10<em>i</em> - 2<em>j</em> - 4<em>k</em>) - (<em>i</em> + 7<em>j</em> - <em>k</em>)
<em>A</em> - <em>B</em> = 9<em>i</em> - 9<em>j</em> - 3<em>k</em>
|<em>A</em> - <em>B</em>| = √(9² + (-9)² + (-3)²) = √189 = 3√19