Answer: The mass of blue copper sulfate is 3.5 g
Explanation:
Law of conservation of mass states that mass can neither be created nor be destroyed but it can only be transformed from one form to another form.
This also means that total mass on the reactant side must be equal to the total mass on the product side.
The chemical equation for the heating of copper sulfate crystals is:
Let the mass of blue copper sulfate be 'x' grams
We are given:
Mass of copper sulfate powder = 2.1 grams
Mass of water = 1.4 grams
Total mass on reactant side = x
Total mass on product side = (2.1 + 1.4) g
So, by applying law of conservation of mass, we get:
Hence, the mass of blue copper sulfate is 3.5 grams
D a baiiiiiiiiii good luck
Answer:
0.01 M
Explanation:
The chemist is performing a serial dilution in order tyo obtain the calibration curve for the instrument.
First we must obtain the concentration of the solution in the 250ml flask from
C1V1 = C2V2
Where;
C1 = concentration of the stock solution
V1 = volume of the stock solution
C2 = concentration of the diluted solution
V2= volume of the diluted solution
2.61 × 10 = C2 × 250
C2 = 2.61 × 10/250
C2 = 0.1 M
Hence for solution in 100ml flask;
0.1 × 10 = C2 × 100
C2 = 0.1 × 10/100
C2 = 0.01 M
<span>These hydrocarbons are many and this depends on the phase diagram of the substance. In a phase diagram, the phase
can be determined by looking at a certain temperature and pressure. For this case, at a temperature of 20 degrees Celsius and at 1 atmosphere.</span>
1,839,100 x 10^6
blah blah 20 characters
its times (x) 10 to the 6th power