Answer:
ATP synthase would be unable to produce ATP
Explanation:
ATP synthase depends on the proton gradient in the intermembrane space to enable it to produce ATP. As a consequence of this, the toxin will make it inactive. Oxidative phosphorylation is now inhibited in this case, as opposed to substrate-level phosphorylation.
Pyruvate is a product of glycolysis, and it will not be affected by a toxin. NADH is very important in the establishing of a proton gradient, so it is expected that it would be unable to be oxidized due to the toxin. Protons produced in the conversion of NADH to NAD+ actually establish the proton gradient. If the gradient is absent, NADH is then not likely to be oxidized.
Vestigial structures are often homologous to structures that are functioning normally in other species. Therefore, vestigial structures can be considered the evidence for evolution, the process by which beneficial heritable traits arise in populations over an extended period of time.
Active transport, specifically phagocytosis
Puffapod (if this is for Harry Potter )
NO, a scientific law can't be broken