Simplified answer is 4+8i
Reflection over the x-axis, vertical shift scale factor 3, horizontal translation LEFT 3 units(opposite since there are parenthesis), vertical translation down 7 units.
Answer:
v = 7
is the value for which
x = (-21 - √301)/10
is a solution to the quadratic equation
5x² + 21x + v = 0
Step-by-step explanation:
Given that
x = (-21 - √301)/10 .....................(1)
is a root of the quadratic equation
5x² + 21x + v = 0 ........................(2)
We want to find the value of v foe which the equation is true.
Consider the quadratic formula
x = [-b ± √(b² - 4av)]/2a ..................(3)
Comparing (3) with (2), notice that
b = 21
2a = 10
=> a = 10/2 = 5
and
b² - 4av = 301
=> 21² - 4(5)v = 301
-20v = 301 - 441
-20v = -140
v = -140/(-20)
v = 7
That is a = 5, b = 21, and v = 7
The equation is then
5x² + 21x + 7 = 0
D is the answer to your question
Answer:y= -3x+7
Step-by-step explanation:
6x+2y=14
2y= -6x+14
y= ( -6x+14)/2
y= -3x+7