Answer:
As the amounts CO^2 in the sea increase, it causes the acidity of the pH increase as a result
Explanation:
“
Answer:
A <u><em>receptor</em></u> is a protein that recognizes and responds to a signal.
Explanation:
A receptor is a protein molecule present on the cells on which the signalling molecules can bind and generate a physiological response. Some receptor molecules can also respond to Sun and light. Each type of cell has specific receptors molecules and hence can respond to specific signals. The receptor molecules hence tend to receive signals for a cell. Molecules such as hormones bind to the receptors.
Answer:
Each FADH2 yields about 1.5 ATP via oxidative phosphorylation.
Explanation:
Most of the ATP molecules are produced by oxidative phosphorylation, not by substrate-level phosphorylation. During glycolysis, 2 ATP molecules per glucose are produced by substrate-level phosphorylation. Similarly, Kreb's cycle also yields 2 ATP per glucose by substrate-level phosphorylation.
For each pair of electrons transferred to O2 from FADH2 via electron transport chain, 4 and 2 protons are pumped from matrix towards the intermembrane space by complex III and complex IV respectively. It generates the proton concentration gradient required to drive the synthesis of 1.5 ATP molecules. Since oxidation of FADH2 is coupled to the phosphorylation of ADP to form ATP, the process is called oxidative phosphorylation.
<span>The vibrations are then sent to three tiny bones in the middle ear: the malleus, incus, and stapes. These bones then amplify the sound vibrations and send them to the cochlea, a snail-shaped structure in the inner ear. The vibrations then cause the fluid inside the cochlea to ripple along the basilar membrane. This ripple stimulates the hair cells that sit on top of the basilar membrane.</span>