Answer:
(a) k'(0) = f'(0)g(0) + f(0)g'(0)
(b) m'(5) = 
Step-by-step explanation:
(a) Since k(x) is a function of two functions f(x) and g(x) [ k(x)=f(x)g(x) ], so for differentiating k(x) we need to use <u>product rule</u>,i.e., ![\frac{\mathrm{d} [f(x)\times g(x)]}{\mathrm{d} x}=\frac{\mathrm{d} f(x)}{\mathrm{d} x}\times g(x) + f(x)\times\frac{\mathrm{d} g(x)}{\mathrm{d} x}](https://tex.z-dn.net/?f=%5Cfrac%7B%5Cmathrm%7Bd%7D%20%5Bf%28x%29%5Ctimes%20g%28x%29%5D%7D%7B%5Cmathrm%7Bd%7D%20x%7D%3D%5Cfrac%7B%5Cmathrm%7Bd%7D%20f%28x%29%7D%7B%5Cmathrm%7Bd%7D%20x%7D%5Ctimes%20g%28x%29%20%2B%20f%28x%29%5Ctimes%5Cfrac%7B%5Cmathrm%7Bd%7D%20g%28x%29%7D%7B%5Cmathrm%7Bd%7D%20x%7D)
this will give <em>k'(x)=f'(x)g(x) + f(x)g'(x)</em>
on substituting the value x=0, we will get the value of k'(0)
{for expressing the value in terms of numbers first we need to know the value of f(0), g(0), f'(0) and g'(0) in terms of numbers}{If f(0)=0 and g(0)=0, and f'(0) and g'(0) exists then k'(0)=0}
(b) m(x) is a function of two functions f(x) and g(x) [
]. Since m(x) has a function g(x) in the denominator so we need to use <u>division rule</u> to differentiate m(x). Division rule is as follows : 
this will give <em>
</em>
on substituting the value x=5, we will get the value of m'(5).
{for expressing the value in terms of numbers first we need to know the value of f(5), g(5), f'(5) and g'(5) in terms of numbers}
{NOTE : in m(x), g(x) ≠ 0 for all x in domain to make m(x) defined and even m'(x) }
{ NOTE :
}
The number could be several different ones. Are you sure that's exactly what the problem says? If not, I'm going to ask you write the entire problem. If not, then whoever made it did not give enough information for there to be an absolute answer. I'm sorry I couldn't help you, but I really hope I can with more information.
Answer:
-34/100 is the fraction in simplest form