Answer:
The answer is <u>"a. 8.13%".</u>
Explanation:
Given that;
d0 = $1.75
p0 = $40.00
g = 3.6% = 0.036
By using the formula;
Price of the stock = (Dividend this year)(1+g) ÷ (r - g)
By putting the values;
40 = (1.75)(1+0.036) ÷ (r - 0.036)
r - 0.036 = (1.75)(1.036) ÷ 40
r - 0.036 = 1.813 ÷ 40
r - 0.036 = 0.045325
r = 0.045325 + 0.036
r = 0.081325 = 0.081325 x 100
<u>r = 8.13%</u>
Use the formula of the present value of an annuity ordinary which is
Pv=pmt [(1-(1+r/k)^(-kn))÷(r/k)]
Pv present value 85000
PMT monthly payment?
R interest rate 0.05
K compounded monthly 12
N time 10 years
Solve the formula for PMT
PMT=Pv÷[(1-(1+r/k)^(-kn))÷(r/k)]
PMT=85,000÷((1−(1+0.05÷12)^(
−12×10))÷(0.05÷12))
=901.55 round to the nearest tenth to get 900
Hope it helps!
The option that will be best in this scenario would be a <span>Parallel test.
In a parallel test, same input will be entered in two different version of simulation. By doing this, we could create multiple simulations to test several possibilities and reducing the total time needed at the same time. The downside is that this test exposes the tester to a high risk of making a mistake.</span>