Many kinds of prokaryotes and eukaryotes contain a structure outside the cell membrane called the cell wall. With only a few exceptions, all prokaryotes have thick, rigid cell walls that give them their shape. Among the eukaryotes, some protists, and all fungi and plants, have cell walls.
Genotype: 50% Aa and 50% aa
Phenotype: 50% Dimples and 50% no dimples
Explanation: Using a punnet square, we can figure out that the mother is recessive and the father is heterozygous. Putting the mother at the top of the square and the father on the side, you end up with the results above by crossing each square with the corresponding letters. It's okay if the letters end up backwards. Just be sure to face them the right direction, capitals being first once you finish.
Hope this helps!
Answer:
There is a need to transform the accumulation of acetyl-CoA into the ketone bodies, as one knows that acetyl-CoA is both labile and possess an enormous amount of energy. Hence, acetyl-CoA due to its unstable characteristic is not ideal for circulation within the tissues, and at the same time, the compound acetyl-CoA does not possess the tendency to pass through the cell membrane.
Due to these reasons, the conversion of acetyl-CoA into the ketone bodies is done, the ketone bodies also act as an alternative source of energy. The ketone bodies work as water-soluble correspondents of fatty acids. The production of ketone bodies generally takes place within the liver cells' mitochondrial matrix. The three forms of ketone bodies are beta-hydroxybutyrate, acetoacetate, and acetone.
The production of ketone bodies by the liver cells helps the cells of the brain at the time of starvation, as the brain cannot use fatty acids as an energy source, as the fatty acids cannot pass through the blood-brain barrier.
Answer:
<em><u>Osmosis and facilitated diffusion</u></em> are two forms of passive transport that are integral to cellular transport mechanisms.
Explanation:
Cells surrounded by a bilipid layer or plasma membrane are amphiphilic, with their polar, hydrophilic lipid heads facing outward, while their hydrophobic non-polar lipid tails facing each other inward.
Although lipid-soluble molecules travel quickly through the bilayer, traveling across its surface into the cell is often difficult for charged and large molecules. Thus, transport proteins, pores and gated channels, transmembrane channels, embedded within the membrane, help to preserve selective permeability.
Across plasma membranes as a form of passive transport in cells, substances move via:
- osmosis - water molecules readily pass through the membrane; the molecules move from high concentration regions to low concentration regions at will through the membrane- they move down their concentration gradient
- facilitated diffusion - channel proteins allow charged ions to move across the membrane. Sodium ions are able to pass freely through specialized sodium channel pores into some cells. These channels always remain open- the ions move down their concentration gradient.