1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
strojnjashka [21]
3 years ago
10

Find the surface area. SHOW WORK

Mathematics
1 answer:
anastassius [24]3 years ago
4 0
22x12x5 and you will get the answer
You might be interested in
) Use the Laplace transform to solve the following initial value problem: y′′−6y′+9y=0y(0)=4,y′(0)=2 Using Y for the Laplace tra
artcher [175]

Answer:

y(t)=2e^{3t}(2-5t)

Step-by-step explanation:

Let Y(s) be the Laplace transform Y=L{y(t)} of y(t)

Applying the Laplace transform to both sides of the differential equation and using the linearity of the transform, we get

L{y'' - 6y' + 9y} = L{0} = 0

(*) L{y''} - 6L{y'} + 9L{y} = 0 ; y(0)=4, y′(0)=2  

Using the theorem of the Laplace transform for derivatives, we know that:

\large\bf L\left\{y''\right\}=s^2Y(s)-sy(0)-y'(0)\\\\L\left\{y'\right\}=sY(s)-y(0)

Replacing the initial values y(0)=4, y′(0)=2 we obtain

\large\bf L\left\{y''\right\}=s^2Y(s)-4s-2\\\\L\left\{y'\right\}=sY(s)-4

and our differential equation (*) gets transformed in the algebraic equation

\large\bf s^2Y(s)-4s-2-6(sY(s)-4)+9Y(s)=0

Solving for Y(s) we get

\large\bf s^2Y(s)-4s-2-6(sY(s)-4)+9Y(s)=0\Rightarrow (s^2-6s+9)Y(s)-4s+22=0\Rightarrow\\\\\Rightarrow Y(s)=\frac{4s-22}{s^2-6s+9}

Now, we brake down the rational expression of Y(s) into partial fractions

\large\bf \frac{4s-22}{s^2-6s+9}=\frac{4s-22}{(s-3)^2}=\frac{A}{s-3}+\frac{B}{(s-3)^2}

The numerator of the addition at the right must be equal to 4s-22, so

A(s - 3) + B = 4s - 22

As - 3A + B = 4s - 22

we deduct from here  

A = 4 and -3A + B = -22, so

A = 4 and B = -22 + 12 = -10

It means that

\large\bf \frac{4s-22}{s^2-6s+9}=\frac{4}{s-3}-\frac{10}{(s-3)^2}

and

\large\bf Y(s)=\frac{4}{s-3}-\frac{10}{(s-3)^2}

By taking the inverse Laplace transform on both sides and using the linearity of the inverse:

\large\bf y(t)=L^{-1}\left\{Y(s)\right\}=4L^{-1}\left\{\frac{1}{s-3}\right\}-10L^{-1}\left\{\frac{1}{(s-3)^2}\right\}

we know that

\large\bf L^{-1}\left\{\frac{1}{s-3}\right\}=e^{3t}

and for the first translation property of the inverse Laplace transform

\large\bf L^{-1}\left\{\frac{1}{(s-3)^2}\right\}=e^{3t}L^{-1}\left\{\frac{1}{s^2}\right\}=e^{3t}t=te^{3t}

and the solution of our differential equation is

\large\bf y(t)=L^{-1}\left\{Y(s)\right\}=4L^{-1}\left\{\frac{1}{s-3}\right\}-10L^{-1}\left\{\frac{1}{(s-3)^2}\right\}=\\\\4e^{3t}-10te^{3t}=2e^{3t}(2-5t)\\\\\boxed{y(t)=2e^{3t}(2-5t)}

5 0
3 years ago
A club is making posters to raise money. The printer charges a base fee of $270 and $2 per poster for supplies. A person sells e
sesenic [268]

<u>Answer:</u>

He must sell 190 posters make a profit of $300.

<u>Explanation: </u>

Given:

Base fee= $270  

Fee for supplies= $2

Cost of poster=$5

To find:

The number of posters to be sold to get a profit of $300=?

Solution:

Let the number of posters sold be n.

Now, we know that,

profit = selling price – cost price

$ 300 = $ 5 for each poster – ( $ 270 base fee + $ 2 for each poster)

300 = 5 x n – (270 + 2 x n)  

300 = 5n – 270 – 2n  

5n – 2n = 300 + 270  

3n = 570  

n=\frac{570}{3}

n = 190

6 0
3 years ago
The percent of working students increased 8.1 to 40.5 what was the present prior to increase
Dmitrij [34]

Answer:

  32.4

Step-by-step explanation:

prior + 8.1 = 40.5 . . . . . . seems to model the problem statement

prior = 32.4 . . . . . . . subtract 8.1 from both sides

Prior to the increase the percent was 32.4.

_____

<em>Comment on the problem statement</em>

When you're talking about a percentage increase in a percentage, it is almost never clear whether you're talking about the percentage of the underlying number, or the percentage of the percentage.

Here, we assume the 8.1 is a percentage of working students, not a percentage of the percentage of workings students. If you actually intend the latter, the percentage before the increase was about 37.465%.

6 0
3 years ago
Y=x+2
pickupchik [31]

Answer:

Noiccce

Step-by-step explanation:

Noiccce

8 0
3 years ago
Read 2 more answers
Gloria collected 23 faintail and comet goldfish. There were 11 fewer fantails than comets. How many comets did Gloria have?
likoan [24]
There’s 23 total of both faintail and comets. But there’s 11 Fewer faintails, so 23-11= 12
5 0
3 years ago
Other questions:
  • Part A: A graph passes through the points (0, 4), (1, 8), and (2, 10). Does this graph represent a linear function or a non-line
    8·2 answers
  • Simplify each expression using order of operations. (the one that’s circled)
    9·1 answer
  • What is it like to live under a carpet
    9·2 answers
  • At the beginning of spring, Taylor planted a small sunflower in her backyard. When it was first planted, the sunflower was 25 in
    13·2 answers
  • 8(3x+3)+3x<br> i don't know this answer
    8·1 answer
  • What is the ordered pair for B?
    10·1 answer
  • What is the answer to 2a X 3a =
    12·1 answer
  • A pond contains 110 fish, of which 20 are carp. If 10 fish are caught from the lake, what are the mean and variance of the numbe
    13·1 answer
  • 2. A bicycling club has 58 members, of which 4 are males and the rest are females. What is the ratio of females to males?
    5·1 answer
  • What % is 35 out of 48? Show work
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!