1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Ksenya-84 [330]
3 years ago
7

Use properties of addition and subtraction to evaluate the expression. -19 - 53 - 31 Enter your answer in the box.

Mathematics
2 answers:
ivanzaharov [21]3 years ago
7 0
You may combine these 3 numbers in any order.

-19 -53 = -72, and then
-72 - 31 = -103.

You could combine -53 and -31 first, and then combine the result with -19.

garri49 [273]3 years ago
5 0
-19 - 53 - 31
= -(19 + 53 + 31)
= -(19 +31 + 53)
= -((20-1) + (30+1) +53)
= -(20 +30 +53)
= -(50 +53)
= -103
You might be interested in
1) Use Newton's method with the specified initial approximation x1 to find x3, the third approximation to the root of the given
neonofarm [45]

Answer:

Check below, please

Step-by-step explanation:

Hello!

1) In the Newton Method, we'll stop our approximations till the value gets repeated. Like this

x_{1}=2\\x_{2}=2-\frac{f(2)}{f'(2)}=2.5\\x_{3}=2.5-\frac{f(2.5)}{f'(2.5)}\approx 2.4166\\x_{4}=2.4166-\frac{f(2.4166)}{f'(2.4166)}\approx 2.41421\\x_{5}=2.41421-\frac{f(2.41421)}{f'(2.41421)}\approx \mathbf{2.41421}

2)  Looking at the graph, let's pick -1.2 and 3.2 as our approximations since it is a quadratic function. Passing through theses points -1.2 and 3.2 there are tangent lines that can be traced, which are the starting point to get to the roots.

We can rewrite it as: x^2-2x-4=0

x_{1}=-1.1\\x_{2}=-1.1-\frac{f(-1.1)}{f'(-1.1)}=-1.24047\\x_{3}=-1.24047-\frac{f(1.24047)}{f'(1.24047)}\approx -1.23607\\x_{4}=-1.23607-\frac{f(-1.23607)}{f'(-1.23607)}\approx -1.23606\\x_{5}=-1.23606-\frac{f(-1.23606)}{f'(-1.23606)}\approx \mathbf{-1.23606}

As for

x_{1}=3.2\\x_{2}=3.2-\frac{f(3.2)}{f'(3.2)}=3.23636\\x_{3}=3.23636-\frac{f(3.23636)}{f'(3.23636)}\approx 3.23606\\x_{4}=3.23606-\frac{f(3.23606)}{f'(3.23606)}\approx \mathbf{3.23606}\\

3) Rewriting and calculating its derivative. Remember to do it, in radians.

5\cos(x)-x-1=0 \:and f'(x)=-5\sin(x)-1

x_{1}=1\\x_{2}=1-\frac{f(1)}{f'(1)}=1.13471\\x_{3}=1.13471-\frac{f(1.13471)}{f'(1.13471)}\approx 1.13060\\x_{4}=1.13060-\frac{f(1.13060)}{f'(1.13060)}\approx 1.13059\\x_{5}= 1.13059-\frac{f( 1.13059)}{f'( 1.13059)}\approx \mathbf{ 1.13059}

For the second root, let's try -1.5

x_{1}=-1.5\\x_{2}=-1.5-\frac{f(-1.5)}{f'(-1.5)}=-1.71409\\x_{3}=-1.71409-\frac{f(-1.71409)}{f'(-1.71409)}\approx -1.71410\\x_{4}=-1.71410-\frac{f(-1.71410)}{f'(-1.71410)}\approx \mathbf{-1.71410}\\

For x=-3.9, last root.

x_{1}=-3.9\\x_{2}=-3.9-\frac{f(-3.9)}{f'(-3.9)}=-4.06438\\x_{3}=-4.06438-\frac{f(-4.06438)}{f'(-4.06438)}\approx -4.05507\\x_{4}=-4.05507-\frac{f(-4.05507)}{f'(-4.05507)}\approx \mathbf{-4.05507}\\

5) In this case, let's make a little adjustment on the Newton formula to find critical numbers. Remember their relation with 1st and 2nd derivatives.

x_{n+1}=x_{n}-\frac{f'(n)}{f''(n)}

f(x)=x^6-x^4+3x^3-2x

\mathbf{f'(x)=6x^5-4x^3+9x^2-2}

\mathbf{f''(x)=30x^4-12x^2+18x}

For -1.2

x_{1}=-1.2\\x_{2}=-1.2-\frac{f'(-1.2)}{f''(-1.2)}=-1.32611\\x_{3}=-1.32611-\frac{f'(-1.32611)}{f''(-1.32611)}\approx -1.29575\\x_{4}=-1.29575-\frac{f'(-1.29575)}{f''(-4.05507)}\approx -1.29325\\x_{5}= -1.29325-\frac{f'( -1.29325)}{f''( -1.29325)}\approx  -1.29322\\x_{6}= -1.29322-\frac{f'( -1.29322)}{f''( -1.29322)}\approx  \mathbf{-1.29322}\\

For x=0.4

x_{1}=0.4\\x_{2}=0.4\frac{f'(0.4)}{f''(0.4)}=0.52476\\x_{3}=0.52476-\frac{f'(0.52476)}{f''(0.52476)}\approx 0.50823\\x_{4}=0.50823-\frac{f'(0.50823)}{f''(0.50823)}\approx 0.50785\\x_{5}= 0.50785-\frac{f'(0.50785)}{f''(0.50785)}\approx  \mathbf{0.50785}\\

and for x=-0.4

x_{1}=-0.4\\x_{2}=-0.4\frac{f'(-0.4)}{f''(-0.4)}=-0.44375\\x_{3}=-0.44375-\frac{f'(-0.44375)}{f''(-0.44375)}\approx -0.44173\\x_{4}=-0.44173-\frac{f'(-0.44173)}{f''(-0.44173)}\approx \mathbf{-0.44173}\\

These roots (in bold) are the critical numbers

3 0
3 years ago
If i clock out at 11:53 and i have 30 Minutes what time do i get in?
lara [203]

Answer:

you get in at 11:23

Step-by-step explanation:

53-30=30

so 11:23

6 0
3 years ago
Read 2 more answers
Find the probability of getting four consecutive aces when four cards are drawn without replacement from a standard deck of 52 p
posledela

Answer:

<em>P=0.0000037</em>

<em>P=0.00037%</em>

Step-by-step explanation:

<u>Probability</u>

A standard deck of 52 playing cards has 4 aces.

The probability of getting one of those aces is

\displaystyle \frac{4}{52}=\frac{1}{13}

Now we got an ace, there are 3 more aces out of 51 cards.

The probability of getting one of those aces is

\displaystyle \frac{3}{51}=\frac{1}{17}

Now we have 2 aces out of 50 cards.

The probability of getting one of those aces is

\displaystyle \frac{2}{50}=\frac{1}{25}

Finally, the probability of getting the remaining ace out of the 49 cards is:

\displaystyle \frac{1}{49}

The probability of getting the four consecutive aces is the product of the above-calculated probabilities:

\displaystyle P= \frac{1}{13}\cdot\frac{1}{17}\cdot\frac{1}{27}\cdot\frac{1}{49}

\displaystyle P= \frac{1}{270,725}

P=0.0000037

P=0.00037%

3 0
3 years ago
Calliope bought 15 sets of mini markers to make goody bags for her party. Neon markers were $3 and metallic markers were $4. She
I am Lyosha [343]

Answer:

7 metallic 8 neon

Step-by-step explanation:

7 0
3 years ago
Read 2 more answers
Help pleaseee which one
MakcuM [25]
Four more I hoped this helped :)
4 0
2 years ago
Other questions:
  • The axis of symmetry for the graph of the function f(x) = 3x2 + bx + 4 is x = . What is the value of b?
    7·2 answers
  • 7x^3y^3+4-11x^5y^2-3x^2y
    14·1 answer
  • Solve these equations. |x+8|=x+8
    13·1 answer
  • The value of x is both 5 times as much as the value of y and 36 more than the value y. I know the answer is 9. How can you solve
    8·1 answer
  • 1/2x+3=2/3x+1<br>what's the answer​
    13·1 answer
  • Identify the number that is a multiple of 5. 66 30 29 1
    11·1 answer
  • Five is 1/10 of what
    5·1 answer
  • Determine the slope and y-intercept for the line that passes through the points (5, 5) and (−5, 1)
    14·1 answer
  • Rectangle a is dilated to form rectangle b. what is the scale factor used .​
    6·1 answer
  • Which is greater? 1.646 or 1.43?
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!