1. Using your straightedge, draw a reference line, if one is not provided.
2. Copy the side of the square onto the reference line, starting at a point labeled A'.
3. Construct a perpendicular at point B' to the line through ab2.
4. Place your compass point at B', and copy the side of the square onto the perpendicular b'g. Label the end of the segment copy as point C.
5. With your compass still set at a span representing AB, place the compass point at C and swing an arc to the left.
6. Holding this same span, place the compass point at A' and swing an arc intersecting with the previous arc. Label the point of intersection as D.
7. Connect points A' to D, D to C, and C to B' to form a square.
The formula to finding a discriminant would be b^2-4ac, the b value of this trinomial being -5, the a value being 2, the c value being 3. Then, you plug the values in the equation and solve: (-5)^2-4(2)(3)
This would simplify to 1, meaning there are two solutions since the discriminant value is positive. If it is 0, there is one solution, if it is negative, then there are no real solutions.
Answer:
95% confidence interval for the proportion of students supporting the fee increase is [0.767, 0.815]. Option C
Step-by-step explanation:
The confidence interval for a proportion is given as [p +/- margin of error (E)]
p is sample proportion = 870/1,100 = 0.791
n is sample size = 1,100
confidence level (C) = 95% = 0.95
significance level = 1 - C = 1 - 0.95 = 0.05 = 5%
critical value (z) at 5% significance level is 1.96.
E = z × sqrt[p(1-p) ÷ n] = 1.96 × sqrt[0.791(1-0.791) ÷ 1,100] = 1.96 × 0.0123 = 0.024
Lower limit of proportion = p - E = 0.791 - 0.024 = 0.767
Upper limit of proportion = p + E = 0.791 + 0.024 = 0.815
95% confidence interval for the proportion of students supporting the fee increase is between a lower limit of 0.767 and an upper limit of 0.815.
Your answer will be 3.7w-2
Answer: 20
<u>Step-by-step explanation:</u>
h(x) = |3x| - 1
h(7) = |3(7)| - 1
= |21| - 1
= 21 - 1
= 20