Point-slope form of a line: we need a point (x₀,y₀) and the slope "m".
y-y₀=m(x-x₀)
slope intercept form :
y=m+b
m=slope
If the line is parallel to y=2/3 x-0, the line will have the same slope, therefore the slope will be: 2/3.
Data:
(8,4)
m=2/3
y-y₀=m(x-x₀)
y-4=2/3(x-8)
y-4=2/3 x-16/3
y=2/3 x-16/3+4
y=2/3 x-4/3 (slope intercept form)
Answer: The equation of the line would be: y=2/3 x-4/3.
if we have the next slope "m",then the perendicular slope will be:
m´=-1/m
We have this equation: y=2/3 x+0; the slope is: m=2/3.
The perpendicular slope will be: m`=-1/(2/3)=-3/2
And the equation of the perpendicular line to : y=2/3 x+0, given the point (8,4) will be:
y-y₀=m(x-x₀)
y-4=-3/2 (x-8)
y-4=-3/2 x+12
y=-3/2x + 12+4
y=-3/2x+16
answer: the perpendicular line to y=2/3 x+0 , given the point (8,4) will be:
y=-3/2 x+16
Answer:
it a
Step-by-step explanation:
T= 60°
It is an equilateral triangle which means all sides and angles are equal
u= 10m
It is an equilateral triangle which means all sides and angles are the same
Answer:
-10
-5
5
Step-by-step explanation:
From the answers given, you probably mean f(x) = x^3 + 10x2 – 25x – 250
The Remainder Theorem is going to take a bit to solve.
You have to try the factors of 250. One way to make your life a lot easier is to graph the equation. That will give you the roots.
The graph appears below. Since the y intercept is -250 the graph goes down quite a bit and if you show the y intercept then it will not be easy to see the roots.
However just to get the roots, the graph shows that
x = -10
x = - 5
x = 5
The last answer is the right one. To use the remainder theorem, you could show none of the answers will give 0s except the last one. For example, the second one will give
f((10) = 10^3 + 10*10^2 - 25*10 - 250
f(10) = 1000 + 1000 - 250 - 250
f(10) = 2000 - 500
f(10) = 1500 which is not 0.
==================
f(1) = (1)^3 + 10*(1)^2 - 25(1) - 250
f(1) = 1 + 10 - 25 - 250
f(1) = -264 which again is not zero
Answer:
#1. 1232 feet per minute
#2. $14.81 per second
#3. 46.93 feet per second
Hope This Helps!
And that it's right!