Answer:
<em>d</em><em> </em><em>.</em><em> </em><em>49</em>
Step-by-step explanation:
<em>180-131</em><em> </em><em>(</em><em> </em><em>supplementary</em><em> </em><em>angle</em><em>)</em>
<em>=</em><em> </em><em>49</em><em>°</em>
From what I gather from your latest comments, the PDF is given to be

and in particular, <em>f(x, y)</em> = <em>cxy</em> over the unit square [0, 1]², meaning for 0 ≤ <em>x</em> ≤ 1 and 0 ≤ <em>y</em> ≤ 1. (As opposed to the unbounded domain, <em>x</em> ≤ 0 *and* <em>y</em> ≤ 1.)
(a) Find <em>c</em> such that <em>f</em> is a proper density function. This would require

(b) Get the marginal density of <em>X</em> by integrating the joint density with respect to <em>y</em> :

(c) Get the marginal density of <em>Y</em> by integrating with respect to <em>x</em> instead:

(d) The conditional distribution of <em>X</em> given <em>Y</em> can obtained by dividing the joint density by the marginal density of <em>Y</em> (which follows directly from the definition of conditional probability):

(e) From the definition of expectation:
![E[X]=\displaystyle\int_0^1\int_0^1 x\,f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy=4\left(\int_0^1x^2\,\mathrm dx\right)\left(\int_0^1y\,\mathrm dy\right)=\boxed{\frac23}](https://tex.z-dn.net/?f=E%5BX%5D%3D%5Cdisplaystyle%5Cint_0%5E1%5Cint_0%5E1%20x%5C%2Cf_%7BX%2CY%7D%28x%2Cy%29%5C%2C%5Cmathrm%20dx%5C%2C%5Cmathrm%20dy%3D4%5Cleft%28%5Cint_0%5E1x%5E2%5C%2C%5Cmathrm%20dx%5Cright%29%5Cleft%28%5Cint_0%5E1y%5C%2C%5Cmathrm%20dy%5Cright%29%3D%5Cboxed%7B%5Cfrac23%7D)
![E[Y]=\displaystyle\int_0^1\int_0^1 y\,f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy=4\left(\int_0^1x\,\mathrm dx\right)\left(\int_0^1y^2\,\mathrm dy\right)=\boxed{\frac23}](https://tex.z-dn.net/?f=E%5BY%5D%3D%5Cdisplaystyle%5Cint_0%5E1%5Cint_0%5E1%20y%5C%2Cf_%7BX%2CY%7D%28x%2Cy%29%5C%2C%5Cmathrm%20dx%5C%2C%5Cmathrm%20dy%3D4%5Cleft%28%5Cint_0%5E1x%5C%2C%5Cmathrm%20dx%5Cright%29%5Cleft%28%5Cint_0%5E1y%5E2%5C%2C%5Cmathrm%20dy%5Cright%29%3D%5Cboxed%7B%5Cfrac23%7D)
![E[XY]=\displaystyle\int_0^1\int_0^1xy\,f_{X,Y}(x,y)\,\mathrm dx\,\mathrm dy=4\left(\int_0^1x^2\,\mathrm dx\right)\left(\int_0^1y^2\,\mathrm dy\right)=\boxed{\frac49}](https://tex.z-dn.net/?f=E%5BXY%5D%3D%5Cdisplaystyle%5Cint_0%5E1%5Cint_0%5E1xy%5C%2Cf_%7BX%2CY%7D%28x%2Cy%29%5C%2C%5Cmathrm%20dx%5C%2C%5Cmathrm%20dy%3D4%5Cleft%28%5Cint_0%5E1x%5E2%5C%2C%5Cmathrm%20dx%5Cright%29%5Cleft%28%5Cint_0%5E1y%5E2%5C%2C%5Cmathrm%20dy%5Cright%29%3D%5Cboxed%7B%5Cfrac49%7D)
(f) Note that the density of <em>X</em> | <em>Y</em> in part (d) identical to the marginal density of <em>X</em> found in (b), so yes, <em>X</em> and <em>Y</em> are indeed independent.
The result in (e) agrees with this conclusion, since E[<em>XY</em>] = E[<em>X</em>] E[<em>Y</em>] (but keep in mind that this is a property of independent random variables; equality alone does not imply independence.)
Answer:
there you go bro. 168 degrees for each angle
Step-by-step explanation:
To calculate the central angle visualize a circle in the center of the polygon. A circle has 360 degrees. Divide 360 by the number of sides and that will tell you the central angle size. So 360 divided by 30 equals 18 degrees.
To find the base angle use this formula
180(n-2)/n where n is the number of sides of a regular polygon.
When you plug in 30 for n
Convert 300% into decimals. So move the decimal point 2 times to the left and you get 3.00 and multiply it by 5 and square it because area of square is s^2
Explanation:
Consider ...
x/a = b/c . . . . . find x
Multiplying by the denominator under x gives ...
x = ab/c . . . . the value of the unknown.
____
In the case where the unknown is in the denominator, you can invert the ratios and solve as above:
a/x = c/b . . . . . note that x is in the denominator
x/a = b/c . . . . . equivalent equation, solve as above