Answer:
![\boxed{4 \sqrt[8]{ {d}^{3} } }](https://tex.z-dn.net/?f=%20%5Cboxed%7B4%20%5Csqrt%5B8%5D%7B%20%7Bd%7D%5E%7B3%7D%20%7D%20%7D%20)
Step-by-step explanation:
![= > 4 {d}^{ \frac{3}{8} } \\ \\ = > 4({d}^{3 \times \frac{1}{8} }) \\ \\ = > 4( {d}^{3} \times {d}^{ \frac{1}{8} } ) \\ \\ = > 4( {d}^{3} \times \sqrt[8]{d} ) \\ \\ = > 4 \sqrt[8]{ {d}^{3} }](https://tex.z-dn.net/?f=%20%3D%20%20%3E%204%20%7Bd%7D%5E%7B%20%5Cfrac%7B3%7D%7B8%7D%20%7D%20%20%20%5C%5C%20%20%5C%5C%20%3D%20%20%20%3E%204%28%7Bd%7D%5E%7B3%20%5Ctimes%20%20%5Cfrac%7B1%7D%7B8%7D%20%7D%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%204%28%20%7Bd%7D%5E%7B3%7D%20%20%5Ctimes%20%20%20%7Bd%7D%5E%7B%20%5Cfrac%7B1%7D%7B8%7D%20%7D%20%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%204%28%20%7Bd%7D%5E%7B3%7D%20%20%5Ctimes%20%20%5Csqrt%5B8%5D%7Bd%7D%20%29%20%5C%5C%20%20%5C%5C%20%20%3D%20%20%3E%204%20%20%5Csqrt%5B8%5D%7B%20%7Bd%7D%5E%7B3%7D%20%7D%20)
Answer:
125.8983
Step-by-step explanation:
Use the formula for volume of a cone: v= (1/3)(3.14)(radius squared)(height) so v = (1/3)(3.14)(20.25)(6) = 125.8983
m∠B = 31.7° , a = 21.1 ft , b = 13.0 ft
Step-by-step explanation:
If ABC is a right triangle, where the right angle is B, then
- The hypotenuse of the triangle is b and a , c are its legs
- sin(A) =

- sin(C) =


- The sum of the measures of the two acute angles A and C is 90°
∵ ABC is a right triangle
∵ m∠C = 90°
∴ c is the hypotenuse and a , b are its legs
∵ m∠A = 58.3°
- The sum of the two acute angles in the right triangle = 90°
∴ m∠A + m∠B = 90°
- Substitute the measure of angle A
∴ 58.3 + m∠B = 90
- Subtract 58.3 from both sides
∴ m∠B = 31.7°
∵ sin(A) = 
∵ c = 24.8 feet
∴ sin(58.3) = 
- By using cross multiplication
∴ a = (24.8) × sin(58.3)
∴ a = 21.1 ft
∵ sin(B) = 
∵ c = 24.8 feet
∴ sin(31.7) = 
- By using cross multiplication
∴ b = (24.8) × sin(31.7)
∴ b = 13.0 ft
m∠B = 31.7° , a = 21.1 ft , b = 13.0 ft
Learn more:
You can learn more about solving the triangle in brainly.com/question/12985572
#LearnwithBrainly
Answer:
i think it's B
Step-by-step explanation:
It cannot be used when performing operations—addition, subtraction, multiplication, or division