1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
slava [35]
3 years ago
13

The average January surface water temperatures (°C) of Lake Michigan from 2000 to 2009 were 5.07, 3.57, 5.32, 3.19, 3.49, 4.25,

4.76, 5.19, 3.94, and 4.34.
The mean value of these temperatures is 4.312.
What is the variance of this data set?
Mathematics
2 answers:
Nezavi [6.7K]3 years ago
8 0

Answer:

0.5192 is the answer

Radda [10]3 years ago
7 0

Answer:

0.5192 is the answer on edge2020

Step-by-step explanation:

You might be interested in
The table shows the price of apples in the local market. What is the cost of 12 pounds of apples? Apples (pounds) Price (dollars
MAXImum [283]
Lbs :       4, 8, 12, 16
cost :     6, 12, ?, 24

12 lbs would cost u $ 18 because the apples cost (6/4) = 1.50 per lb
5 0
3 years ago
Read 2 more answers
Whats the simplest form of 6 /18
MissTica

Answer:

What is 6/18 Simplified? - 1/3 is the simplified fraction for 6/18.

Step-by-step explanation:

8 0
2 years ago
Read 2 more answers
Is 5 a solution to 2x + 5 = 15? Yes or No<br> How do you know?
dybincka [34]

Answer:

Step-by-step explanation:

8

5 0
3 years ago
Read 2 more answers
What is the range for the amount of hours studied?<br><br><br> 6<br> 18<br> 4<br> 12
Ne4ueva [31]

Answer:

6

Step-by-step explanation:

You take the most amount studied (18) and the least amount studied (12) and subtract them and that would be the range

5 0
3 years ago
Ayuda porfa, es urgente
storchak [24]

Answer:

Media: 167.88 cm

Mediana:  167.6 cm

Modo: 166.67 cm

Step-by-step explanation:

Hola!

La variable de interés es:

X: estatura de un alumno de noveno año de educación básica.

<u>1)</u>

Primero debes ordenar los datos de menor a mayor y contar cuantos de ellos corresponden dentro de cada intervalo determinado, por ejemplo, el primer intervalo es:

[160;164)

Los intervalos están definidos con el límite inferior cerrado, es decir que incluye el valor de dicho límite, y el límite inferior abierto, es decir, que ese valor no está incluido en el intervalo.

160,160,160,161,162,163,164,165,165,165,165,166,167,167,167,167,168,168,168,169,170, 170, 170,171,173,173,173,175,175,176.

f(1)= 6 (seis valores de estatura corresponden a este intervalo)

La sumatoria de todas las frecuencias absolutas debe dar por resultado el total de observaciones n= 30

Para el segundo intervalo [164;168)

f(2)= 10

<u>2)</u>

hi representa la frecuencia relativa simple y esta se calcula como fi/n

Por ejemplo para el primer intervalo:

h(1)= f(1)/n= 6/30= 0.20

Esta indica la proporción de que las alturas estén entre 160 y 164 cm.

En porcentaje se expresa como hi*100, para el primer intervalo: 0.20*100)= 20%

Para el segundo intervalo h(2)= f(2)/n= 10/30= 0.33 y su porcentaje es 33%

Como indican la proporción de cada categoría de la distribución, la sumatoria de las frecuencias relativas simples de todas las categorías debe ser 1.

<u>3)</u>

Como lo dice su nombre, esta frecuencia es acumulada y se calcula como la sumatoria de las frecuencias absolutas simples, para el primer intervalo, dado que previo a él no hay "nada" es igual a la frecuencia absoluta simple:

F(1)= f(1)

Para el segundo intervalo, es la frecuencia absoluta simple del primer intervalo más la frecuencia relativa simple del segundo intervalo:

F(2)= f(1) + f(2)= 6 + 10= 16

<u>4)</u>

Esta frecuencia también representa la sumatoria de las frecuencias relativas simples.

H(1)= h(1)= 0.20 como previo al primer intervalo no existe distribución definida, la frecuencia relativa acumulada es igual a la frecuencia relativa simple.

Para el segundo intervalo la frecuencia relativa acumulada es:

H(2)= h(1)+h(2)?= 0.20+0.33= 0.57

Adjunta a la respuesta encontrarás la tabla completa.

5)

Como no específica medidas de tendencia central requeridas, voy a calcular la media, mediana y modo utilizando la tabla.

<u>Media</u>

X[barra]= (∑x'fi)/n= ∑x'*hi

Dónde x' representa la marca de clase de cada intervalo. Para calcular la marca de clase de los intervalos debes realizar un promedio entre sus límites y su valor siempre debe encontrarse dentro de los límites del intervalo. Si no es así, has cometido un error de cálculos:

(Limite inferior + Limite superior)/2

1. [160;164)  x₁'= (160+164)/2= 162

2. [164;168)  x₂'= 166

3. [168;172)  x₃'= 170

4. [172;176)  x₄'= 174

Una vez que calculaste las marcas de clase, puedes calcular la media:

X[barra]= ∑x'*hi= (162*0.20)+(166*0.33)+(170*0.27)+(174*0.20)= 167.88 cm

<u>Mediana:</u>

La mediana es el valor de la variable que divide a la muestra en dos (50%-50%).

Para poder calcularla primero debes identificar su posición, en este tipo de presentación, debes identificar el intervalo en el que se encuentra incluida la mediana.

Para muestras pares, la posición de la mediana se calcula como:

PosMe= n/2= 30/2= 15

Esto significa que la mediana corresponde a la 15va observación de la muestra, observando la columna de las frecuencias absolutas (simples o acumuladas) debes identificar cual es el intervalo de la mediana:

Al segundo intervalo se corresponde una frecuencia acumulada de 16, lo que significa que la posición de la mediana está incluida en este intervalo:

[164;168)

Entonces puedes calcular la mediana como:

Me= Li + c [\frac{PosMe-F_{(i-1)}}{f_i} ]

Dónde

Li: es el límite inferior del intervalo de mediana.

c: es la amplitud del intervalo

F₍i₋₁₎: frecuencia absoluta acumulada del intervalo anterior al intervalo mediana

fi: frecuencia absoluta del intervalo mediana

Me= 164 + 4 [\frac{15-6}{10} ]= 167.6

Me= 167.6 cm, como puedes notar, el valor de la mediana se encuentra entre los límites del intervalo.

<u>Modo o Moda:</u>

El modo o la moda de una distribución corresponde al valor más observado, es decir, al valor con mayor frecuencia absoluta simple. Al igual que la media, para calcular el modo primero debes identificar el intervalo que lo contiene. En este caso, el intervalo modal será aquel con la mayor frecuencia absoluta simple.

[164;168)

La fórmula para calcular el modo es:

Md= Li + c[\frac{(f_{max}-f_{ant})}{(f_{max}-f_{ant})+(f_{max}-f_{post})} ]

Li: es el límite inferior del intervalo modal

c: es la amplitud del intervalo

f_{max}: es la frecuencia absoluta simple del intervalo modal.

f_{ant}: es la frecuencia absoluta simple del intervalo anterior al intervalo modal.

f_{post}: es la frecuencia absoluta simple del intervalo posterior al intervalo modal.

Md= 164 + 4[\frac{10-6)}{(10-6)+(10-8)} ]= 164+4[\frac{4}{4+2} ]= 166.67

Md= 166.67 cm

¡Espero que tengas un buen día!

4 0
3 years ago
Other questions:
  • A car travels 0.75 miles per minute. Explain how you could use proportional reasoning to find how far the car travels in one hou
    6·1 answer
  • 5 &amp; 10/13 rounded to the nearest tenth ( A 5.7 B.5.2 C.5 D.4.5)
    5·1 answer
  • What is the order from least to greatest
    9·1 answer
  • A machine packs boxes at a constant rate of 3/2 a box every 2/1 minute what is the number of boxes per minute that the machine p
    13·1 answer
  • What percent of 72 is 48 with step by step process
    13·1 answer
  • What is the image point of (5,6) after the transformation D3 o R270°?
    13·1 answer
  • Please help quickly !!!
    9·1 answer
  • Please help!!!! And explain answer please​
    7·1 answer
  • PLS DO ALL thank you
    12·1 answer
  • Solve For X. 5 - 2x^2 = -15
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!