First, tan(<em>θ</em>) = sin(<em>θ</em>) / cos(<em>θ</em>), so if cos(<em>θ</em>) = 3/5 > 0 and tan(<em>θ</em>) < 0, then it follows that sin(<em>θ</em>) < 0.
Recall the Pythagorean identity:
sin²(<em>θ</em>) + cos²(<em>θ</em>) = 1
Then
sin(<em>θ</em>) = -√(1 - cos²(<em>θ</em>)) = -4/5
and so
tan(<em>θ</em>) = (-4/5) / (3/5) = -4/3
The remaining trig ratios are just reciprocals of the ones found already:
sec(<em>θ</em>) = 1/cos(<em>θ</em>) = 5/3
csc(<em>θ</em>) = 1/sin(<em>θ</em>) = -5/4
cot(<em>θ</em>) = 1/tan(<em>θ</em>) = -3/4
We want to find

, for

.
Recall the product rule: for 2 differentiable functions f and g, the derivative of their product is as follows:

.
Thus,
![y'=[(x^2+2)^3]'[(x^3+3)^2]+[(x^3+3)^2]'[(x^2+2)^3]\\\\ =3(x^2+2)^2(x^3+3)^2+2(x^3+3)(x^2+2)^3](https://tex.z-dn.net/?f=y%27%3D%5B%28x%5E2%2B2%29%5E3%5D%27%5B%28x%5E3%2B3%29%5E2%5D%2B%5B%28x%5E3%2B3%29%5E2%5D%27%5B%28x%5E2%2B2%29%5E3%5D%5C%5C%5C%5C%20%3D3%28x%5E2%2B2%29%5E2%28x%5E3%2B3%29%5E2%2B2%28x%5E3%2B3%29%28x%5E2%2B2%29%5E3)
Answer: A)

.
Answer:
yltkh
Step-by-step explanation:
ewgeg
Answer: 21.17 (22 rounded)
explanation: 120/34 = 3.529 calories per cup
3.529 x 6 cups = 21.17
hope this helps :)