Answer:
Step-by-step explanation:
Approximate the integral
by dividing the region
with vertices (0,0),(4,0),(4,2) and (0,2) into eight equal squares.
Find the sum 
Since all are equal squares, so
for every 

Thus, 
Evaluating the iterate integral ![\int\limits^4_0 \int\limits^2_0 {(x+y)} \, dydx=\int\limits^4_0 {[xy+\frac{y^2}{2} ]}\limits^2_0 \, dx =\int\limits^4_0 {[2x+2]}dx\\\\=[x^2+2x]\limits^4_0=24.](https://tex.z-dn.net/?f=%5Cint%5Climits%5E4_0%20%5Cint%5Climits%5E2_0%20%7B%28x%2By%29%7D%20%5C%2C%20dydx%3D%5Cint%5Climits%5E4_0%20%7B%5Bxy%2B%5Cfrac%7By%5E2%7D%7B2%7D%20%5D%7D%5Climits%5E2_0%20%5C%2C%20dx%20%3D%5Cint%5Climits%5E4_0%20%7B%5B2x%2B2%5D%7Ddx%5C%5C%5C%5C%3D%5Bx%5E2%2B2x%5D%5Climits%5E4_0%3D24.)
Thus, 
Hi there!
• f(x) = 3x + 1
• g(x) = x² - 6
Then,
According to th' question :-
(f - g)(x) = f(x) - g(x)
= 3x + 1 - (x² - 6)
= 3x + 1 - x² + 6
= -x² + 3x + 7
Hence,
Option 2ⁿᵈ : -x² + 3x + 7 is Correct.
~ Hope it helps!
9.06. It cannot be any other number because it must be between 9.04 and 9.15 and no other number has a 6 (9.04, 9.05, 9.06, 9.07, 9.08, 9.09, 9.10, 9.11, 9.12, 9.13, 9.14, 9.15).
Answer:
this aint a question right?
Step-by-step explanation: