Answer:

Step-by-step explanation:
We want to simplify;

This can be rewritten as;

We multiply by the reciprocal of the second fraction to obtain;

We multiply to get;


Answer:

Step-by-step explanation:

I think the answer is $5.66
Answer:
Step-by-step explanation:
Slope of line A = 
= 
= 3
Slope of line B = 
= 
Slope of line C = 
= 
5). Slope of the hypotenuse of the right triangle = 
= 
= 
Since slopes of line C and the hypotenuse are same, right triangle may lie on line C.
6). Slope of the hypotenuse = 
= 3
Therefore, this triangle may lie on the line A.
7). Slope of hypotenuse = 
= 
Given triangle may lie on the line C.
8). Slope of hypotenuse = 
= 
Given triangle may lie on the line B.
9). Slope of hypotenuse = 
= 
Given triangle may lie on the line B.
10). Slope of hypotenuse = 
= 3
Given triangle may lie on the line A.
12, 4
take the first number together than the last ones and just find the difference