Answer: 0.6767
Step-by-step explanation:
Given : Mean =
errors per page
Let X be the number of errors in a particular page.
The formula to calculate the Poisson distribution is given by :_
![P(X=x)=\dfrac{e^{-\lambda}\lambda^x}{x!}](https://tex.z-dn.net/?f=P%28X%3Dx%29%3D%5Cdfrac%7Be%5E%7B-%5Clambda%7D%5Clambda%5Ex%7D%7Bx%21%7D)
Now, the probability that a randomly selected page does not need to be retyped is given by :-
![P(X\leq2)=P(0)+P(1)+P(2)\\\\=(\dfrac{e^{-2}2^0}{0!}+\dfrac{e^{-2}2^1}{1!}+\dfrac{e^{-2}2^2}{2!})\\\\=0.135335283237+0.270670566473+0.270670566473\\\\=0.676676416183\approx0.6767](https://tex.z-dn.net/?f=P%28X%5Cleq2%29%3DP%280%29%2BP%281%29%2BP%282%29%5C%5C%5C%5C%3D%28%5Cdfrac%7Be%5E%7B-2%7D2%5E0%7D%7B0%21%7D%2B%5Cdfrac%7Be%5E%7B-2%7D2%5E1%7D%7B1%21%7D%2B%5Cdfrac%7Be%5E%7B-2%7D2%5E2%7D%7B2%21%7D%29%5C%5C%5C%5C%3D0.135335283237%2B0.270670566473%2B0.270670566473%5C%5C%5C%5C%3D0.676676416183%5Capprox0.6767)
Hence, the required probability :- 0.6767
Answer:
<h2>7.4inches</h2>
Step-by-step explanation:
Check the attachment for the diagram. Sine rule will be used to get the unknown side of the triangle.
According to the rule;
![\frac{u}{sinU} = \frac{v}{sinV} = \frac{w}{sinW}\\\frac{u}{sinU} = \frac{w}{sinW}](https://tex.z-dn.net/?f=%5Cfrac%7Bu%7D%7BsinU%7D%20%3D%20%20%5Cfrac%7Bv%7D%7BsinV%7D%20%3D%20%5Cfrac%7Bw%7D%7BsinW%7D%5C%5C%5Cfrac%7Bu%7D%7BsinU%7D%20%3D%20%5Cfrac%7Bw%7D%7BsinW%7D)
Given w = 3 in, ∠W=23° and ∠U=73°, on substituting into the equation above to get u we have;
![\frac{u}{sin73^{0} } = \frac{3}{sin23^{0} }\\usin23^{0} = 3sin73^{0}\\u = \frac{3sin73^{0} }{sin23^{0} }\\u = \frac{2.87}{0.39} \\u = 7.358\\u = 7.4in](https://tex.z-dn.net/?f=%5Cfrac%7Bu%7D%7Bsin73%5E%7B0%7D%20%7D%20%3D%20%5Cfrac%7B3%7D%7Bsin23%5E%7B0%7D%20%7D%5C%5Cusin23%5E%7B0%7D%20%3D%203sin73%5E%7B0%7D%5C%5Cu%20%3D%20%5Cfrac%7B3sin73%5E%7B0%7D%20%7D%7Bsin23%5E%7B0%7D%20%7D%5C%5Cu%20%3D%20%5Cfrac%7B2.87%7D%7B0.39%7D%20%5C%5Cu%20%3D%207.358%5C%5Cu%20%3D%207.4in)
The length of u is 7.4inches to nearest 10th of an inch
Out of 1,200 students, 700 are boys. Therefore, the fraction would be
![\frac{700}{1200}](https://tex.z-dn.net/?f=%20%5Cfrac%7B700%7D%7B1200%7D%20)
.
To convert this into a percentage, divide 700 by 1,200.
![\frac{700}{1200}](https://tex.z-dn.net/?f=%20%5Cfrac%7B700%7D%7B1200%7D%20)
= 0.583333 (or just 0.583 if you round)
Multiply 0.583
by 100 to get a percentage.
0.583 · 100 =
58.3So, the percent of boys at the school is
58.3%.
Answer:
x = -3/2y + 3
Step-by-step explanation:
2x + 3y = 6
2x = -3y + 6
x = -3/2y + 3