Answer:
When y = |x + h|, the graph is shifted (or translated) <u>to the left.</u>
When y = |x - h|, the graph is shifted (or translated) <u>to the right.</u>
Step-by-step explanation:
Part A:
The parent function of vertex graphs are y = |x|, and any transformations done to y = |x| are shown in this format (also known as vertex form): y = a|x - h| + k
(h , k) is the vertex of the graph.
So, for the first part, what y = |x + h| is saying is y = |x - (-h)|.
The -h is substituted for h, and negatives cancel out, resulting in x + h.
This translates to the left of the graph.
Part B:
For the second part, y = |x - h| looks just like the normal vertex form. In this one, we are just plugging in a positive value for h.
This translates to the right of the graph.
12x - 4y = -8
y = 3x + 2
Rewrite the first equation
12x + 8 = 4y
3x + 2 = y
As you see, the first and second equation are actually the same, meaning there's an infinite number of solutions.
Answer:
HJ is 8
JE is 4
Step-by-step explanation:
Nice song in the other tab by the way:)