No, Jonah is not correct. The answer is shown in the picture.
Your answer will be (B) simply use military time and subtract them and you'll get your answer best of luck.
Hey I got to it c c c c c c c c c c c c c c c c 8 8
9514 1404 393
Answer:
Step-by-step explanation:
The decay factor is 1 -25% = 0.75 per hour, so the exponential equation can be written ...
r(t) = 1450·0.75^t . . . . . milligrams remaining after t hours
__
a) After 4 hours, the amount remaining is ...
r(4) = 1450·0.75^4 ≈ 458.79 . . . mg
About 459 mg will remain after 4 hours.
__
b) To find the time it takes before the amount remaining is less than 5 mg, we need to solve ...
r(t) < 5
1450·0.75^t < 5 . . . . use the function definition
0.75^t < 5/1450 . . . . divide by 1450
t·log(0.75) < log(1/290) . . . . . take logarithms (reduce fraction)
t > log(1/290)/log(0.75) . . . . . divide by the (negative) coefficient of t
t > 19.708
It will take about 20 hours for the amount of the drug remaining to be less than 5 mg.