Answer: -10
Step-by-step explanation:
Simplifying
-3(y + 5) = 15
Reorder the terms:
-3(5 + y) = 15
(5 * -3 + y * -3) = 15
(-15 + -3y) = 15
Solving
-15 + -3y = 15
Solving for variable 'y'.
Move all terms containing y to the left, all other terms to the right.
Add '15' to each side of the equation.
-15 + 15 + -3y = 15 + 15
Combine like terms: -15 + 15 = 0
0 + -3y = 15 + 15
-3y = 15 + 15
Combine like terms: 15 + 15 = 30
-3y = 30
Divide each side by '-3'.
y = -10
Simplifying
Tienes que hallar el mínimo común múltiplo de las 3 cantidades.
18= 2×3²
24= 2³×3
36= 2²×3²
mcm(18,24,36) = 2³×3²=8×9= 72
Eso quier decir que si partieron a la misma hora se encontraran de nuevo en el punto de partida 72 minutos después de la salida.
Las vueltas que habrán realizado será el resultado de dividir 72 entre el tiempo que tardan en dar una vuelta
<span>Mayor: </span> = 4
<span>Mediano: </span> = 3
<span>Pequeño: </span> = 2
Soluciónes:
se vuelven a encontrar a los 72 min de la salida
<span>El mayor dió 4 vueltas, el mediano 3 y el pequeño 2</span>
9514 1404 393
Answer:
Step-by-step explanation:
Let x and y represent the weights of the large and small boxes, respectively. The problem statement gives rise to the system of equations ...
x + y = 85 . . . . . combined weight of a large and small box
70x +50y = 5350 . . . . combined weight of 70 large and 50 small boxes
We can subtract 50 times the first equation from the second to find the weight of a large box.
(70x +50y) -50(x +y) = (5350) -50(85)
20x = 1100 . . . . simplify
x = 55 . . . . . . . divide by 20
Using this in the first equation, we can find the weight of a small box.
55 +y = 85
y = 30 . . . . . . . subtract 55
A large box weighs 55 pounds; a small box weighs 30 pounds.