As X' is the reflected point of X(0,3) , so the x co ordinate of X' = 0+8 =8 and here y co ordinate remains same.
So, X'= (8,3)
Like that way, Y' is the reflected point of Y(2,0) and Z' is the reflected point of Z(4,2)
As the point Z is lying on the line x=4 and the reflection is also across that line, so both Z and Z' represent same point.
Y'= (2+4, 0) = (6, 0)
Z' = (4, 2)
The area of the given composite figure is 34 square feet
<h3>Area of rectangle</h3>
Area of the rectangle = length * width
<h3>Get the area of the given composite figure</h3>
For the composite figure shown:
Area = (8*3) + (2 * 5)
Area = 24 + 10
Area = 34 square feet
Hence the area of the given composite figure is 34 square feet
Learn more on area of rectangle here: brainly.com/question/25292087
Answer:
B) 4√2
General Formulas and Concepts:
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Parametric Differentiation
Integration
- Integrals
- Definite Integrals
- Integration Constant C
Arc Length Formula [Parametric]: ![\displaystyle AL = \int\limits^b_a {\sqrt{[x'(t)]^2 + [y(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5Eb_a%20%7B%5Csqrt%7B%5Bx%27%28t%29%5D%5E2%20%2B%20%5By%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx)
Step-by-step explanation:
<u>Step 1: Define</u>
<em>Identify</em>

Interval [0, π]
<u>Step 2: Find Arc Length</u>
- [Parametrics] Differentiate [Basic Power Rule, Trig Differentiation]:

- Substitute in variables [Arc Length Formula - Parametric]:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{[1 + sin(t)]^2 + [-cos(t)]^2}} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B%5B1%20%2B%20sin%28t%29%5D%5E2%20%2B%20%5B-cos%28t%29%5D%5E2%7D%7D%20%5C%2C%20dx)
- [Integrand] Simplify:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx)
- [Integral] Evaluate:
![\displaystyle AL = \int\limits^{\pi}_0 {\sqrt{2[sin(x) + 1]} \, dx = 4\sqrt{2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20AL%20%3D%20%5Cint%5Climits%5E%7B%5Cpi%7D_0%20%7B%5Csqrt%7B2%5Bsin%28x%29%20%2B%201%5D%7D%20%5C%2C%20dx%20%3D%204%5Csqrt%7B2%7D)
Topic: AP Calculus BC (Calculus I + II)
Unit: Parametric Integration
Book: College Calculus 10e
Answer:
3.
Step-by-step explanation:
Implicit differentiation:
x^2 y + (xy)^3 + 3x = 0
x^2 y + x^3y^3 + 3x = 0
Using the product rule:
2x* y + x^2*dy/dx + 3x^2 y^3 + x^3* (d(y^3)/dx) + 3 = 0
2xy + x^2 dy/dx + 3x^2 y^3 + x^3* 3y^2 dy/dx + 3 = 0
dy/dx(x^2 + 3y^2x^3) = (-2xy - 3x^2y^3 - 3)
dy/dx= (-2xy - 3x^2y^3 - 3) / (x^2 + 3y^2x^3)
At the point (-1, 3).
the derivative = (6 - 81 - 3)/(1 -27)
= -78/-26
= 3.
Answer:
22.5 square feet
Step-by-step explanation:
Hope this helps.