Answer:
- D. The experimental data does not support Sally’s hypothesis.
Step-by-step explanation:
<u>Sally's hypothesis can be shown as:</u>
- 8c = 1p, where c- coil, p- paper clip
<u>From the data in the table we can see that:</u>
- 8c = 2p ⇒ 4c = 1p
- 16c = 4p ⇒ 4c = 1p
- 24c = 6p ⇒ 4c = 1p
As we see there is a difference, Sally can pick up one paper clip for each 4 coils.
Correct answer choice is D.
32 mm = length × 100
(32 mm)/100 = length . . . . . divide both sides by 100
0.32 mm = length
The actual length of the organism is 0.32 mm.
Answer:
y=-5x-5
Step-by-step explanation:
The line contains points at (-2,5) and (0,-5)
(y1-y2) / (x1-x2) = slope
(-2,5) =(x1,y1)
(0,-5) = (x2,y2)
(5--5) / (-2-0)
10 / -2 = -5
y= -5x + b
plug in points for x and y to find b
5=-5(-2)+b
5=10+b
-5=b
y=-5x-5
Answer:
3m² + 2mn + 7n²
Step-by-step explanation:
Subtract m² + 3mn - n² from 4m² + 5mn + 6n², that is
4m² + 5mn + 6n² - (m² + 3mn - n²)
= 4m² + 5mn + 6n² - m² - 3mn + n² ← collect like terms
= 3m² + 2mn + 7n²
Step-by-step explanation:
<h3><u>Given</u><u>:</u><u>-</u></h3>
(√3+√2)/(√3-√2)
<h3><u>To </u><u>find</u><u>:</u><u>-</u></h3>
<u>Rationalised</u><u> form</u><u> </u><u>=</u><u> </u><u>?</u>
<h3><u>Solution</u><u>:</u><u>-</u></h3>
We have,
(√3+√2)/(√3-√2)
The denominator = √3-√2
The Rationalising factor of √3-√2 is √3+√2
On Rationalising the denominator then
=>[(√3+√2)/(√3-√2)]×[(√3+√2)/(√3+√2)]
=>[(√3+√2)(√3+√2)]×[(√3-√2)(√3+√2)]
=>(√3+√2)²/[(√3-√2)(√3+√2)]
=> (√3+√2)²/[(√3)²-(√2)²]
Since (a+b)(a-b) = a²-b²
Where , a = √3 and b = √2
=> (√3+√2)²/(3-2)
=> (√3-√2)²/1
=> (√3+√2)²
=> (√3)²+2(√3)(√2)+(√2)²
Since , (a+b)² = a²+2ab+b²
Where , a = √3 and b = √2
=> 3+2√6+2
=> 5+2√6
<h3><u>Answer:-</u></h3>
The rationalised form of (√3+√2)/(√3-√2) is 3+2√6+2.
<h3>
<u>Used formulae:-</u></h3>
→ (a+b)² = a²+2ab+b²
→ (a-b)² = a²-2ab+b²
→ (a+b)(a-b) = a²-b²
→ The Rationalising factor of √a-√b is √a+√b