Part 1.] Match the following items. 1. 2, 4, 8, 16, . . ., 64---------- > <span>B. finite sequence </span>2. 3, 6, 9, 12, . . . ------------- > <span>C. infinite sequence </span>3. 3 + 9 + 27 + 81 + . . .------> <span>D. geometric series </span>4. 3 + 5 + 7 + 9 + . . .----------> A. arithmetic series 5. 3, -3, 3, -3, 3,-3, . . .-------- ><span>E. alternating sequence </span><span> </span><span>Part 2.]-3, 6, -9, 12, -15, . . . Which of the following represents the general term for the sequence given? </span>A. (-1^n)*(3^n) for n=1-----------> (-1^1)*(3^1)=-3 for n=2-----------> (-1^2)*(3^2)=9 -------------- a2=6 no represents
B. (-1^n)*(3n) for n=1-----------> (-1^1)*(3*1)=-3 for n=2-----------> (-1^2)*(3*2)=6 for n=3-----------> (-1^3)*(3*3)=-9 for n=4-----------> (-1^4)*(3*4)=12 for n=5-----------> (-1^5)*(3*5)=-15
C. (-1^(n+1))*(3) for n=1-----------> (-1^(1+1))*(3)=3---------- > a1=-3 no represents
the answer part B is option B. (-1^n)*(3n)
Part 3.] The first attached picture
Σ (2n+1) for n=1 to 5 n1---------> (2*1+1)=3 n2---------> (2*2+1)=5 n3---------> (2*3+1)=7 n4---------> (2*4+1)=9 n5---------> (2*5+1)=11 Σ (2n+1) for n=1 to 5=[3+5+7+9+11]=35
the answer part C is 35
Part 4.] The second attached picture
Σ (3n) for n=1 to 3 n1---------> (3*1)=3 n2---------> (3*2)=6 n3---------> (3*3)=9 Σ (3n) for n=1 to 3=[3+6+9]=18
the answer part 4 is 18
Part 5.] The third attached picture Σ (2n+2) for n=1 to 4 n1---------> (2*1+2)=4 n2---------> (2*2+2)=6 n3---------> (2*3+2)=8 n4---------> (2*4+2)=10 Σ (2n+2) for n=1 to 4=[4+6+8+10]=28
the answer part 5 is 28
<span>Part 6.] Which of the following best describes the following set of numbers? 6+8+10+12+...+(4+2n)+... 8-6=2 10-8=2 12-10=2 </span><span>the next number is obtained by adding 2 to the previous number </span>this is an Arithmetic Series the answer is the option D. Arithmetic Series