Answer:What are the equivalence classes of the equivalence relations in Exercise 3? A binary relation defined on a set S is said to be equivalence relation if it is reflexive, symmetric and transitive. An equivalence relation defined on a set S, partition the set into disjoint equivalence classes
Answer:
1.65
Step-by-step explanation:
you said one pound is $4.40
and that how much is 3/8 of a pound
so 3/8 multiplied by 4.40
Answer:
480/(x+60) ≤ 7
Step-by-step explanation:
We can use the relations ...
time = distance/speed
distance = speed×time
speed = distance/time
to write the required inequality any of several ways.
Since the problem is posed in terms of time (7 hours) and an increase in speed (x), we can write the time inequality as ...
480/(60+x) ≤ 7
Multiplying this by the denominator gives us a distance inequality:
7(60+x) ≥ 480 . . . . . . at his desired speed, Neil will go no less than 480 miles in 7 hours
Or, we can write an inequality for the increase in speed directly:
480/7 -60 ≤ x . . . . . . x is at least the difference between the speed of 480 miles in 7 hours and the speed of 60 miles per hour
___
Any of the above inequalities will give the desired value of x.
Answer:
8=1.2x+2
Step-by-step explanation:
you are given the total ($8) and that he wants one loaf of bread $2×1, so 8=1.2(the cost) times the number of tomatoes plus $2