Step-by-step explanation:
<em>I</em><em> </em><em>a</em><em>m</em><em> </em><em>r</em><em>e</em><em>a</em><em>l</em><em>l</em><em>y</em><em> </em><em>v</em><em>e</em><em>r</em><em>y</em><em> </em><em>s</em><em>o</em><em>r</em><em>r</em><em>y</em><em> </em><em>a</em><em>b</em><em>o</em><em>u</em><em>t</em><em> </em><em>t</em><em>h</em><em>i</em><em>s</em><em> </em><em>b</em><em>e</em><em>c</em><em>a</em><em>u</em><em>s</em><em>e</em><em> </em><em>I</em><em> </em><em>c</em><em>a</em><em>n</em><em>'</em><em>t</em><em> </em><em>a</em><em>n</em><em>s</em><em>w</em><em>e</em><em>r</em><em> </em><em>o</em><em>f</em><em> </em><em>t</em><em>h</em><em>i</em><em>s</em><em> </em><em>q</em><em>u</em><em>e</em><em>s</em><em>t</em><em>i</em><em>o</em><em>n</em><em> </em><em>b</em><em>e</em><em>c</em><em>a</em><em>u</em><em>s</em><em>e</em><em> </em><em>I</em><em> </em><em>c</em><em>a</em><em>n</em><em>'</em><em>t</em><em> </em><em>u</em><em>n</em><em>d</em><em>e</em><em>r</em><em>s</em><em>t</em><em>a</em><em>n</em><em>d</em><em> </em><em>I</em><em> </em><em>a</em><em>m</em><em> </em><em>s</em><em>o</em><em>o</em><em>o</em><em>o</em><em>o</em><em> </em><em>s</em><em>o</em><em>r</em><em>r</em><em>y</em>
Answer:
2x+1
Step-by-step explanation:
that's a hard question
we know that g(x)= x-3
so f(g(x))= f(x-3)
we put it in the equation :
f(x-3)= 2(x-3) +7 = 2x-6+7 = 2x +1
Answer:
5 1/5 miles
Step-by-step explanation:
Given that :
Library is located halfway between park and home ;
Distance between library and park = 1 3/10 miles
Hence, total distance between park and home :
1 3/10 + 1 3/10 = 2 6/10
The distance driven :
Home to park ; park back home
2 6/10 + 2 6/10 = 4 12/10
4 + 12/10 = 4 + 1 2/10
= 5 2/10
= 5 1/5 miles
Answer:
look at picture
Step-by-step explanation:
x: adult tickets
y: student tickets
Answer: A
Step-by-step explanation:
First, the problem is g(f(x)). You would plug in f(x) wherever you see an x in g(x). To find the domain, you take the bottom function, and set it equal to 0.

When you solve that, you get x=2. You know your domain is x≥2, but there is as asymptote at x=11. That means the graph never reaches x=11, but gets very close. You find that by setting the entire equation equal to 0 and solve from there.