Answer:
- 8
Step-by-step explanation:
The common difference d between consecutive terms is
d =
-
, that is
d = - 4 - (- 2) = - 4 + 2 = - 2
To obtain the next term subtract - 2 from - 6
next term = - 6 - 2 = - 8
Answer:
D
Step-by-step explanation:
You can put the points in as the x and y values. 12(2)-(-1)=25 and 9(2)+(-1)=17
well, let's keep in mind that the SAS postulate, so if one Side and the Angle next to it and the following Side after the angle are equal on both triangles, both triangles are congruent. Now, we have the angle 30° with sides and 9 and 2x and sides 9 and x + 4, well, the 9's are equal, dohh, you know, if only the 2x = x + 4, we'd be golden

Find the critical points of f(y):Compute the critical points of -5 y^2
To find all critical points, first compute f'(y):( d)/( dy)(-5 y^2) = -10 y:f'(y) = -10 y
Solving -10 y = 0 yields y = 0:y = 0
f'(y) exists everywhere:-10 y exists everywhere
The only critical point of -5 y^2 is at y = 0:y = 0
The domain of -5 y^2 is R:The endpoints of R are y = -∞ and ∞
Evaluate -5 y^2 at y = -∞, 0 and ∞:The open endpoints of the domain are marked in grayy | f(y)-∞ | -∞0 | 0∞ | -∞
The largest value corresponds to a global maximum, and the smallest value corresponds to a global minimum:The open endpoints of the domain are marked in grayy | f(y) | extrema type-∞ | -∞ | global min0 | 0 | global max∞ | -∞ | global min
Remove the points y = -∞ and ∞ from the tableThese cannot be global extrema, as the value of f(y) here is never achieved:y | f(y) | extrema type0 | 0 | global max
f(y) = -5 y^2 has one global maximum:Answer: f(y) has a global maximum at y = 0
Area = (12ft)(4ft)
A = 48 ft^2