Answer:
19. C
20. D
21. B
22. A
Step-by-step explanation:
If an angle is subtended from an arc and it goes to the opposite end of the circle, the angle is HALF of the measure of the arc. If it goes to the center, it is SAME measure as arc.
19.
Arc BC is DOUBLE of Angle BAC, so
78 * 2 = 156
Answer is C
20.
Arc BEC is DOUBLE of Angle BAC, so
114 * 2 = 228
Answer is D
21.
Angle ABC is HALF of Arc AC, so
Angle ABC = 110/2 = 55
Answer is B
22.
Angle ABC is HALF of Arc AC, so
Angle ABC = 218/2 = 109
Answer is A
Answer:
35 students
Step-by-step explanation:
70% of 50 = 0.7×50 = 35
Answer:
a) ![f(t)=0.001155[\frac{2}{3}t(t-1980)^{3/2}-\frac{4}{15}(t-1980)^{5/2}]+264,034,000](https://tex.z-dn.net/?f=f%28t%29%3D0.001155%5B%5Cfrac%7B2%7D%7B3%7Dt%28t-1980%29%5E%7B3%2F2%7D-%5Cfrac%7B4%7D%7B15%7D%28t-1980%29%5E%7B5%2F2%7D%5D%2B264%2C034%2C000)
b) f(t=2015) = 264,034,317.7
Step-by-step explanation:
The rate of change in the number of hospital outpatient visits, in millions, is given by:
![f'(t)=0.001155t(t-1980)^{0.5}](https://tex.z-dn.net/?f=f%27%28t%29%3D0.001155t%28t-1980%29%5E%7B0.5%7D)
a) To find the function f(t) you integrate f(t):
![\int \frac{df(t)}{dt}dt=f(t)=\int [0.001155t(t-1980)^{0.5}]dt](https://tex.z-dn.net/?f=%5Cint%20%5Cfrac%7Bdf%28t%29%7D%7Bdt%7Ddt%3Df%28t%29%3D%5Cint%20%5B0.001155t%28t-1980%29%5E%7B0.5%7D%5Ddt)
To solve the integral you use:
![\int udv=uv-\int vdu\\\\u=t\\\\du=dt\\\\dv=(t-1980)^{1/2}dt\\\\v=\frac{2}{3}(t-1980)^{3/2}](https://tex.z-dn.net/?f=%5Cint%20udv%3Duv-%5Cint%20vdu%5C%5C%5C%5Cu%3Dt%5C%5C%5C%5Cdu%3Ddt%5C%5C%5C%5Cdv%3D%28t-1980%29%5E%7B1%2F2%7Ddt%5C%5C%5C%5Cv%3D%5Cfrac%7B2%7D%7B3%7D%28t-1980%29%5E%7B3%2F2%7D)
Next, you replace in the integral:
![\int t(t-1980)^{1/2}=t(\frac{2}{3}(t-1980)^{3/2})- \frac{2}{3}\int(t-1980)^{3/2}dt\\\\= \frac{2}{3}t(t-1980)^{3/2}-\frac{4}{15}(t-1980)^{5/2}+C](https://tex.z-dn.net/?f=%5Cint%20t%28t-1980%29%5E%7B1%2F2%7D%3Dt%28%5Cfrac%7B2%7D%7B3%7D%28t-1980%29%5E%7B3%2F2%7D%29-%20%5Cfrac%7B2%7D%7B3%7D%5Cint%28t-1980%29%5E%7B3%2F2%7Ddt%5C%5C%5C%5C%3D%20%5Cfrac%7B2%7D%7B3%7Dt%28t-1980%29%5E%7B3%2F2%7D-%5Cfrac%7B4%7D%7B15%7D%28t-1980%29%5E%7B5%2F2%7D%2BC)
Then, the function f(t) is:
![f(t)=0.001155[\frac{2}{3}t(t-1980)^{3/2}-\frac{4}{15}(t-1980)^{5/2}]+C'](https://tex.z-dn.net/?f=f%28t%29%3D0.001155%5B%5Cfrac%7B2%7D%7B3%7Dt%28t-1980%29%5E%7B3%2F2%7D-%5Cfrac%7B4%7D%7B15%7D%28t-1980%29%5E%7B5%2F2%7D%5D%2BC%27)
The value of C' is deduced by the information of the exercise. For t=0 there were 264,034,000 outpatient visits.
Hence C' = 264,034,000
The function is:
![f(t)=0.001155[\frac{2}{3}t(t-1980)^{3/2}-\frac{4}{15}(t-1980)^{5/2}]+264,034,000](https://tex.z-dn.net/?f=f%28t%29%3D0.001155%5B%5Cfrac%7B2%7D%7B3%7Dt%28t-1980%29%5E%7B3%2F2%7D-%5Cfrac%7B4%7D%7B15%7D%28t-1980%29%5E%7B5%2F2%7D%5D%2B264%2C034%2C000)
b) For t = 2015 you have:
![f(t=2015)=0.001155[\frac{2}{3}(2015)(2015-1980)^{1/2}-\frac{4}{15}(2015-1980)^{5/2}]+264,034,000\\\\f(t=2015)=264,034,317.7](https://tex.z-dn.net/?f=f%28t%3D2015%29%3D0.001155%5B%5Cfrac%7B2%7D%7B3%7D%282015%29%282015-1980%29%5E%7B1%2F2%7D-%5Cfrac%7B4%7D%7B15%7D%282015-1980%29%5E%7B5%2F2%7D%5D%2B264%2C034%2C000%5C%5C%5C%5Cf%28t%3D2015%29%3D264%2C034%2C317.7)
1) We have 1300 packing peanuts, and 20 ft^2. Therefore, to find out how many packing peanuts there are per square foot, we divide the number of peanuts (1300) by the number of square feet (20 ft^2). This gives us 1300 / 20 = 65 packing peanuts per square foot.
2) We do not know the current volume of the box which fits the 1300 packing peanuts (all we know is its area). But it is reasonable to expect that if we increase the volume by 25%, the number of packing peanuts will also increase by 25%. This means we can fit 1300*(1.25) = 1625 peanuts in the larger box.
3) This will depend on how the box is larger. If its height remains the same, and its floor area increases to accommodate the greater volume, then the number of packing peanuts per square foot remains the same.
However, if the height of the box is different, then the number of packing peanuts per square foot will change, since the floor area will not increase by the same 25% any more.