Answer:

Step-by-step explanation:
The triangle in the given problem is a right triangle, as the tower forms a right angle with the ground. This means that one can use the right angle trigonometric ratios to solve this problem. The right angle trigonometric ratios are as follows;

Please note that the names (
) and (
) are subjective and change depending on the angle one uses in the ratio. However the name (
) refers to the side opposite the right angle, and thus it doesn't change depending on the reference angle.
In this problem, one is given an angle with the measure of (35) degrees, and the length of the side adjacent to this angle. One is asked to find the length of the side opposite the (35) degree angle. To achieve this, one can use the tangent (
) ratio.

Substitute,

Inverse operations,


Simplify,


4/5 because 12/3=4 and 15/3=5
Ans: The equation that represents a proportional relationship, or a line, is y=kx, where k is the constant of proportionality. Use k=yx from either a table or a graph to find k and create the equation. Proportional relationships can be represented by tables, graphs and equations.
Answer:
Area_lawn = 393.75 π ft^2
Step-by-step explanation:
Maximum radius : 30 feet
Minimum radius: 30 feet - 0.25*(30feet) = 22.5 feet
(25 percent reduction)
To find the area of lawn that can be watered, we just need to calculate the area for the maximum radius and the minimum radius, and then subtract them.
Since the sprinklers have a circular area:
Area = π*radius^2
Max area = π*(30 ft)^2 = 900π ft^2
Min area = π*(22.5 ft)^2 = 506.25π ft^2
Maximum area of lawn that can be watered by the sprinkler:
Area_lawn = Max area - Min area = 900π ft^2 -506.25π ft^2
Area_lawn = 393.75 π ft^2