Answer:
The correct option is D.
Step-by-step explanation:
The given equation is

According to the addition property of equality
and
are equivalent equations.
Use addition property of equality, add 3x on both the sides.


Therefore Sam's work is incorrect because he make calculation mistake.
According to the subtraction property of equality
and
are equivalent equations.
Use subtraction property of equality, subtract 5x from both the sides.


Therefore Roy's work is correct because he used subtraction property.
Option D is correct.
The slope of the graph is 6
Check the picture below, so the park looks more or less like so, with the paths in red, so let's find those midpoints.
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad K(\stackrel{x_2}{1}~,~\stackrel{y_2}{3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 1 -3}{2}~~~ ,~~~ \cfrac{ 3 +1}{2} \right) \implies \left(\cfrac{ -2 }{2}~~~ ,~~~ \cfrac{ 4 }{2} \right)\implies JK=(-1~~,~~2) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20J%28%5Cstackrel%7Bx_1%7D%7B-3%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20K%28%5Cstackrel%7Bx_2%7D%7B1%7D~%2C~%5Cstackrel%7By_2%7D%7B3%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%201%20-3%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%203%20%2B1%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%20-2%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%204%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20JK%3D%28-1~~%2C~~2%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ L(\stackrel{x_1}{5}~,~\stackrel{y_1}{-1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 +5}{2}~~~ ,~~~ \cfrac{ -3 -1}{2} \right) \implies \left(\cfrac{ 4 }{2}~~~ ,~~~ \cfrac{ -4 }{2} \right)\implies LM=(2~~,~~-2) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20L%28%5Cstackrel%7Bx_1%7D%7B5%7D~%2C~%5Cstackrel%7By_1%7D%7B-1%7D%29%5Cqquad%20M%28%5Cstackrel%7Bx_2%7D%7B-1%7D~%2C~%5Cstackrel%7By_2%7D%7B-3%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%20-1%20%2B5%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-3%20-1%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%204%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-4%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20LM%3D%282~~%2C~~-2%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

now, let's check the other path, JM and KL
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ J(\stackrel{x_1}{-3}~,~\stackrel{y_1}{1})\qquad M(\stackrel{x_2}{-1}~,~\stackrel{y_2}{-3}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ -1 -3}{2}~~~ ,~~~ \cfrac{ -3 +1}{2} \right) \implies \left(\cfrac{ -4 }{2}~~~ ,~~~ \cfrac{ -2 }{2} \right)\implies JM=(-2~~,~~-1) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20J%28%5Cstackrel%7Bx_1%7D%7B-3%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20M%28%5Cstackrel%7Bx_2%7D%7B-1%7D~%2C~%5Cstackrel%7By_2%7D%7B-3%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%20-1%20-3%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-3%20%2B1%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%20-4%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-2%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20JM%3D%28-2~~%2C~~-1%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![~~~~~~~~~~~~\textit{middle point of 2 points } \\\\ K(\stackrel{x_1}{1}~,~\stackrel{y_1}{3})\qquad L(\stackrel{x_2}{5}~,~\stackrel{y_2}{-1}) \qquad \left(\cfrac{ x_2 + x_1}{2}~~~ ,~~~ \cfrac{ y_2 + y_1}{2} \right) \\\\\\ \left(\cfrac{ 5 +1}{2}~~~ ,~~~ \cfrac{ -1 +3}{2} \right) \implies \left(\cfrac{ 6 }{2}~~~ ,~~~ \cfrac{ 2 }{2} \right)\implies KL=(3~~,~~1) \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=~~~~~~~~~~~~%5Ctextit%7Bmiddle%20point%20of%202%20points%20%7D%20%5C%5C%5C%5C%20K%28%5Cstackrel%7Bx_1%7D%7B1%7D~%2C~%5Cstackrel%7By_1%7D%7B3%7D%29%5Cqquad%20L%28%5Cstackrel%7Bx_2%7D%7B5%7D~%2C~%5Cstackrel%7By_2%7D%7B-1%7D%29%20%5Cqquad%20%5Cleft%28%5Ccfrac%7B%20x_2%20%2B%20x_1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20y_2%20%2B%20y_1%7D%7B2%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20%5Cleft%28%5Ccfrac%7B%205%20%2B1%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%20-1%20%2B3%7D%7B2%7D%20%5Cright%29%20%5Cimplies%20%5Cleft%28%5Ccfrac%7B%206%20%7D%7B2%7D~~~%20%2C~~~%20%5Ccfrac%7B%202%20%7D%7B2%7D%20%5Cright%29%5Cimplies%20KL%3D%283~~%2C~~1%29%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)

so the red path will be 
Answer:
B)
and C) 
Step-by-step explanation:
Once a linear function has a constant rate of change, you just have to find the linear functions. Also, the other ones are quadratic functions, and their graph are parabolas, which don't have a constant rate of change.
Considering 
has a constant positive rate of slope 2.

has a constant negative rate of slope -7

Answer:
Please mark be brainliest and I hoped this helped!
x = 45°
Step-by-step explanation:
Since this is an isosceles triangle, that means that x, and the angle opposite from x, are the same. We take 135° and subtract that from 180°. That gives us 45°. Since the angle opposing x is 45°, then x is 45° as well.