<span>Simplifying
3a2 + -2a + -1 = 0
Reorder the terms:
-1 + -2a + 3a2 = 0
Solving
-1 + -2a + 3a2 = 0
Solving for variable 'a'.
Factor a trinomial.
(-1 + -3a)(1 + -1a) = 0
Subproblem 1Set the factor '(-1 + -3a)' equal to zero and attempt to solve:
Simplifying
-1 + -3a = 0
Solving
-1 + -3a = 0
Move all terms containing a to the left, all other terms to the right.
Add '1' to each side of the equation.
-1 + 1 + -3a = 0 + 1
Combine like terms: -1 + 1 = 0
0 + -3a = 0 + 1
-3a = 0 + 1
Combine like terms: 0 + 1 = 1
-3a = 1
Divide each side by '-3'.
a = -0.3333333333
Simplifying
a = -0.3333333333
Subproblem 2Set the factor '(1 + -1a)' equal to zero and attempt to solve:
Simplifying
1 + -1a = 0
Solving
1 + -1a = 0
Move all terms containing a to the left, all other terms to the right.
Add '-1' to each side of the equation.
1 + -1 + -1a = 0 + -1
Combine like terms: 1 + -1 = 0
0 + -1a = 0 + -1
-1a = 0 + -1
Combine like terms: 0 + -1 = -1
-1a = -1
Divide each side by '-1'.
a = 1
Simplifying
a = 1Solutiona = {-0.3333333333, 1}</span>
A:b=c:d
7.2:x=1:25. If u see two ratios equal each other, the product of a and d is equal to the product of b and c. This means that (7.2 times 25) is equal to x. This equals 180=x. The actual distance of the trail of 180 km. Hope this helps!
49.38 to the nearest tenth is 49.4
Hope I helped!
Answer:
190 is the answer of the equation.
Step-by-step explanation:
a(b + c) × 2
Now putting the values of a,b and c.
5(7+12)×2
= 5(19)×2
= 95×2
= 190
the construction of fields of formal infinite series in several variables, generalizing the classical notion of formal Laurent series in one variable. Our discussion addresses the field operations for these series (addition, multiplication, and division), the composition, and includes an implicit function theorem.
(PDF) Formal Laurent series in several variables. Available from: https://www.researchgate.net/publication/259130653_Formal_Laurent_series_in_several_variables [accessed Oct 08 2018].