Complete Question
A population has a mean of 25, a median of 24, and a mode of 26. The standard deviation is 5. The value of the 16th percentile is _______. The range for the middle 3 standard deviation is _______.
Answer:
The value of the 16th percentile is 
The range for the middle 3 standard deviation is 
Step-by-step explanation:
From the question we are told that
The mean is 
The median is 
The mode is 
The standard deviation is 
Generally the 16th percentile is mathematically represented as
![P(x)= P(\frac{X - \mu }{ \sigma } \le \frac{x- 25 }{5} ) = 0.16[/teGenerally [tex]\frac{X - \mu}{\sigma } = Z(The \ standardized \ value \ of \ X )](https://tex.z-dn.net/?f=P%28x%29%3D%20P%28%5Cfrac%7BX%20%20-%20%20%5Cmu%20%7D%7B%20%5Csigma%20%7D%20%20%20%5Cle%20%5Cfrac%7Bx-%2025%20%7D%7B5%7D%20%29%20%3D%200.16%5B%2Fte%3C%2Fp%3E%3Cp%3EGenerally%20%20%5Btex%5D%5Cfrac%7BX%20-%20%20%5Cmu%7D%7B%5Csigma%20%7D%20%20%3D%20%20Z%28The%20%20%5C%20%20standardized%20%5C%20%20value%20%5C%20of%20%20%5C%20X%20%20%29)
So

Now from the normal distribution table the z-score of 0.16 is
z = -1

=> 
=> 
=> 
=> 
The range for the middle 3 standard deviation is mathematically represented



F(x) basically just substitutes the "y"
so you would bring everything over to one side
y + 3 = 0
subtract 3
y = -3
then
f(x) = -3
That is B)
Respuesta:
8
Explicación paso a paso:
Si A, B y C son números enteros, según la propiedad distributiva;
A (B + C) = AB + AC
tenga en cuenta que A se distribuyó sobre B y C
Aplicando esto para expandir la expresión dada -4. (-5 + 3)
-4. (-5 + 3)
= -4 (-5) + -4 (3)
= 20 + (-12)
= 20 - 12
= 8
Por lo tanto, la respuesta requerida es 8
You take the whole number and put it in a fraction over 1 then divide by flipping the second fraction and multiplying
24 dollars if you times the amount of percentage using the correct ratio you should get around 24 or maybe 24.50