Answer:
85°
Step-by-step explanation:
AED and DEB would add up to 180, the same goes for AEC and CEB
Answer:
See Attachment
Step-by-step explanation:
The graph of Y=5.5x will be a straight line passing through origin as shown in attachment.
Unlike the previous problem, this one requires application of the Law of Cosines. You want to find angle Q when you know the lengths of all 3 sides of the triangle.
Law of Cosines: a^2 = b^2 + c^2 - 2bc cos A
Applying that here:
40^2 = 32^2 + 64^2 - 2(32)(64)cos Q
Do the math. Solve for cos Q, and then find Q in degrees and Q in radians.
Answer:
4
Step-by-step explanation:
7+7+7+7 or 28/7 =4
If in the triangle ABC , BF is an angle bisector and ∠ABF=41° then angle m∠BCE=8°.
Given that m∠ABF=41° and BF is an angle bisector.
We are required to find the angle m∠BCE if BF is an angle bisector.
Angle bisector basically divides an angle into two parts.
If BF is an angle bisector then ∠ABF=∠FBC by assuming that the angle is divided into two parts.
In this way ∠ABC=2*∠ABF
∠ABC=2*41
=82°
In ΔECB we got that ∠CEB=90° and ∠ABC=82° and we have to find ∠BCE.
∠BCE+∠CEB+EBC=180 (Sum of all the angles in a triangle is 180°)
∠BCE+90+82=180
∠BCE=180-172
∠BCE=8°
Hence if BF is an angle bisector then angle m∠BCE=8°.
Learn more about angles at brainly.com/question/25716982
#SPJ1