Answer:

Explanation:
(a) Litres of water

(b) Mass of NaF

1 kmol of NaF (41.99 kg) contains 19.00 kg of F⁻.

Answer:
4204 K
Explanation:
Step 1: Data
<em>Given data</em>
- Density of uranium hexafluoride (ρ): 0.5820 g/L
- Pressure of uranium hexafluoride (P): 0.5073 atm
<em>Required data</em>
- Universal gas constant (R): 0.08206 atm.L/mol.K
- Molar mass of uranium hexafluoride (M): 352.02 g/mol
Step 2: Calculate the temperature of the gas
We will use the following expression derived from the ideal gas equation.
P × M = ρ × R × T
T = P × M/ρ × R
T = 0.5073 atm × (352.02 g/mol)/(0.5820 g/L) × (0.08206 atm.L/mol.K)
T = 4204 K
The reaction between boron sulfide and carbon is given as:
2B2S3 + 3C → 4B + 3CS2
As per the law of conservation of mass, for any chemical reaction the total mass of reactants must be equal to the total mass of the products.
Given data:
Mass of C = 2.1 * 10^ 4 g
Mass of B = 3.11*10^4 g
Mass of CS2 = 1.47*10^5
Mass of B2S3 = ?
Now based on the law of conservation of mass:
Mass of B2S3 + mass C = mass of B + mass of CS2
Mass of B2S3 + 2.1 * 10^ 4 = 3.11*10^4 + 1.47*10^5
Mass of B2S3 = 15.7 * 10^4 g
Answer:23.976
Explanation:830j = 197.6 cal. 197.6/100g=1.976 degrees. plus 22 degrees =23.976