Here, we use the mole as we would use any other collective number: a dozen eggs; a Bakers' dozen; a Botany Bay dozen.
Of course, the mole specifies a much larger quantity, and if I have a mole of stuff then I have
6.022
×
10
23
individual items of that stuff. We can also specify an equivalent mass, because we also know the mass of a mole of iron, and a mole of oxygen etc........The mole is thus the link between the macro world of grams and kilograms and litres, that which we can measure out in the lab, to the micro world of atoms, and molecules, that which we can perceive only indirectly.
Here we have the formula unit
F
e
2
(
S
O
4
)
3
. If there is a mole of formula units, there are necessarily 2 moles of iron atoms, 3 sulfate ions,.......etc.
Answer:
False
Explanation:
It is important to give exact measurements.
Answer:
The number of molecules is 1.4140*10^24 molecules
Explanation:
To know the number of molecules, we need to determine how many moles of water we have, water has molar mass of 18.015g/mol
This means that one mole of water molecules has a mass of 18.015g.
42.3g * 1 mole H2O/18.015g
= 2.3480 moles H2O
We are using avogadros number to find the number of molecules of water
2.3480 H2O * 6.022*10^ 23moles/ 1mole of H2O
That's 2.3480 multiplied by 6.022*10^23 divided by 1 mole of H2O
Number of molecules = 1.4140 *10^24 molecules
Answer:
Dmitry Mendeleev
Explanation:
Around 1869 a Russian scientist, Dmitry Mendeleev formed what is now known as the periodic table or chart. The Mendeleevian periodic table was based on the atomic weights of elements using the periodic law. The periodic law states that "chemical properties of elements are a periodic function of their atomic weights".
The modern periodic table was re-stated by Henry Moseley in the 1900s. He changed the basis of the periodic law to atomic masses.
Answer:
a metal and a nonmetal element
Explanation: