Because the focus is (-2,-2) and the directrix is y = -4, the vertex is (-2,-3).
Consider an arbitrary point (x,y) on the parabola.
The square of the distance between the focus and P is
(y+2)² + (x+2)²
The square of the distance from the point to the directrix is
(y+4)²
Therefore
(y+4)² = (y+2)² + (x+2)²
y² + 8y + 16 = y² + 4y + 4 + (x+2)²
4y = (x+2)² - 12
y = (1/4)(x+2)² - 3
Answer:
I believe it 4004 mins i need to check up on it but im 95% positive its that
She has distributed the bracket incorrectly
(64 + 5) - 0.2(- 20 + 10)
=
(69) - 0.2 (- 10)
=34.5 + 2
= 36.5
5x+3y+6x+9y
All you'd need to do is combine like terms. So add 5x to 6x and add 3y to 9y.
(5x+6x)+(3y+9y)
Final Answer: 11x + 12y
Answer:
Step-by-step explanation:
1) The center lies on the vertical line x = -5 and the the circle is tangent to (touches in one place only) the y-axis. Thus, the radius is 5.
2) Starting with (x - h)^2 + (y - k)^2 = r^2 and comparing this to the given
(x - 4)^2 + (y + 3)^2 = 6^2
we see that h = 4, k = -3 and r = 6. The center is at (4, -3) and the radius is 6.
3) Notice that A and B have the same x-coordinate, x = 15. The center of the circle is thus (15, -2), where that -2 is the halfway point between the two given points in the vertical direction. Arbitrarily choose A(15, 4) as one point on the circle. Then the equation of this circle is
(x - 4)^2 + (y + 3)^2 = r^2 = 6^2, where the 6 is one half of the vertical distance between A(15, 4) and B(15, -8) (which is 12).