First we need to find k ( rate of growth)
The formula is
A=p e^kt
A future bacteria 4800
P current bacteria 4000
E constant
K rate of growth?
T time 5 hours
Plug in the formula
4800=4000 e^5k
Solve for k
4800/4000=e^5k
Take the log for both sides
Log (4800/4000)=5k×log (e)
5k=log (4800/4000)÷log (e)
K=(log(4,800÷4,000)÷log(e))÷5
k=0.03646
Now use the formula again to find how bacteria will be present after 15 Hours
A=p e^kt
A ?
P 4000
K 0.03646
E constant
T 15 hours
Plug in the formula
A=4,000×e^(0.03646×15)
A=6,911.55 round your answer to get 6912 bacteria will be present after 15 Hours
Hope it helps!
Given the radius, circumference can be solved by the equation, C = 2πr. The circumference of the circle above is C = 2π(8 in) = 16<span>π in. To solve for the length of the segment joining the arc is the circumference times the ratio of central angle and 360 degrees.
Length of the segment = (16</span>π in)(60/360) = 8/3 <span>π in
Thus, the length of the segment is approximately 8.36 in. </span>
Answer:
150º
Step-by-step explanation:
Answer: B 65 and C 275
Step-by-step explanation:
Just divide by 3 then multiply by 5
Answer:
The roots of the polynomial equation in this case would be the intersection of the 2 polynomial functions. which are at x = 4 and x = -3
Step-by-step explanation:
The roots are found by finding the x-values of the intersections of these two cubic polynomial functions.
We could try solving algebraically, but you have the graph.