Answer:
decreasing at 390 miles per hour
Step-by-step explanation:
Airplane A's distance in miles to the airport can be written as ...
a = 30 -250t . . . . . where t is in hours
Likewise, airplane B's distance to the airport can be written as ...
b = 40 -300t
The distance (d) between the airplanes can be found using the Pythagorean theorem:
d^2 = a^2 + b^2
Differentiating with respect to time, we have ...
2d·d' = 2a·a' +2b·b'
d' = (a·a' +b·b')/d
__
To find a numerical value of this, we need to find the values of its variables at t=0.
a = 30 -250·0 = 30
a' = -250
b = 40 -300·0 = 40
b' = -300
d = √(a²+b²) = √(900+1600) = 50
Then ...
d' = (30(-250) +40(-300))/50 = -19500/50 = -390
The distance between the airplanes is decreasing at 390 miles per hour.
We write the equation in terms of dy/dx,
<span>y'(x)=sqrt (2y(x)+18)</span>
dy/dx = sqrt(2y + 18)
dy/dx = sqrt(2) ( sqrt(y + 9))
Separating the variables in the equation, we will have:
<span>1/sqrt(y + 9) dy= sqrt(2) dx </span>
Integrating both sides, we will obtain
<span>2sqrt(y+9) = x(sqrt(2)) + c </span>
<span>where c is a constant and can be determined by using the boundary condition given </span>
<span>y(5)=9 : x = 5, y = 9
</span><span>sqrt(9+9) = 5/sqrt(2) + C </span>
<span>C = sqrt(18) - 5/sqrt(2) = sqrt(2) / 2</span>
Substituting to the original equation,
sqrt(y+9) = x/sqrt(2) + sqrt(2) / 2
<span>sqrt(y+9) = (2x + 2) / 2sqrt(2)
</span>
Squaring both sides, we will obtain,
<span>y + 9 = ((2x+2)^2) / 8</span>
y = ((2x+2)^2) / 8 - 9
Answer:
8 kilometers in one hour
Step-by-step explanation:
4:30/4
30
by 4
7.5
4 divided by 4
1
7.5 minutes to 1 kilometer
since there are 60 minutes in a hour
60/7.5 = 8
8 x 1 = 8
Answer: I believe it’s 24
Step-by-step explanation: if not sorry
Answer:
$793.00
Step-by-step explanation:
109x7=763
763+30=793