Answer:
% Po lost = 100[1 - e^(-0.005t)] %; 73.0 g
Step-by-step explanation:
p(t) = 100e^(-0.005t)
Initial amount: p(0) = 100
Amount remaining: p(t) = 100e^(-0.005t)
Amount lost: p(0) – p(t) = 100 - 100e^(-0.005t) = 100[1 - e^(-0.005t)]
% of Po lost = amount lost/initial amount × 100 %
= [1 - e^(-0.005t)] × 100 % = 100[1 - e^(-0.005t)] %
p(63) = 100e^(-0.005 × 63) = 100e^(-0.315) = 100 × 0.730 = 73 g
The mass of polonium remaining after 63 days is 73 g.
Answer:
Yes, △ABC ∼ △FED by AA postulate.
Step-by-step explanation:
Given:
Two triangles ABC and FED.
m∠A = m∠B
m∠C = m∠A + 30°
m∠E = m∠F = 
m∠D =
°.
Now, let m∠A = m∠B = 
So, m∠C = m∠A + 30° = 
Now, sum of all interior angles of a triangle is 180°. Therefore,
m∠A + m∠B + m∠C = 180

Therefore, m∠A = 50°, m∠B = 50° and m∠C = m∠A + 30° = 50 + 30 = 80°.
Now, consider triangle FED,
m∠D+ m∠E + m∠F = 180

Therefore, m∠F = 50°
m∠E = 50° and
m∠D = 
So, both the triangles have congruent corresponding angle measures.
m∠A = m∠F = 50°
m∠B = m∠E = 50°
m∠C = m∠D = 80°
Therefore, the two triangles are similar by AA postulate.
Answer:60
Step-by-step explanation:30%+30%=60% since it is a rectangle i thing this is the answer
Answer:
A =28.26
Step-by-step explanation:
Using the area formula
A = pi r^2
We use pi = 3.14 and the radius is 3
A = 3.14 * (3)^2
A = 3.14 *9
A =28.26
Answer:
In Section 6.1, we introduced the logarithmic functions as inverses of exponential functions and
discussed a few of their functional properties from that perspective. In this section, we explore
the algebraic properties of logarithms. Historically, these have played a huge role in the scientific
development of our society since, among other things, they were used to develop analog computing
devices called slide rules which enabled scientists and engineers to perform accurate calculations
leading to such things as space travel and the moon landing. As we shall see shortly, logs inherit
analogs of all of the properties of exponents you learned in Elementary and Intermediate Algebra.
We first extract two properties from Theorem 6.2 to remind us of the definition of a logarithm as
the inverse of an exponential function.
Step-by-step explanation:
Hope this helps