1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
svlad2 [7]
3 years ago
8

What is the equivalent expression for (3x²y÷x³)4

Mathematics
2 answers:
kvv77 [185]3 years ago
7 0

\frac{3y}{x}
vivado [14]3 years ago
6 0
12y/x hope this helps :)
You might be interested in
Jade and chet get a weekly allowance plus x dollars for each time the pair walks the dog. they plan to save 40% of their combine
irina1246 [14]

The amount of money Jade and chet will have to purchase the app is $11.6

<h3>How to solve equation?</h3>

  • Jade = 8 + 2x
  • Chet = 4x + 6

Where,

x = $2.50

Amount each earned:

Jade = 8 + 2x

= 8 + 2(2.50)

= 8 + 5

= $13

Chet = 4x + 6

= 4(2.50) + 6

= 10 + 6

= $16

Combined earnings = $13 + $16

= $29

Amount planned to save = 40% of combined earnings

= 40% × $29

= 0.4 × 29

= $11.6

Learn more about equation:

brainly.com/question/2972832

#SPJ1

8 0
2 years ago
The ground-state wave function for a particle confined to a one-dimensional box of length L is Ψ=(2/L)^1/2 Sin(πx/L). Suppose th
Hitman42 [59]

Answer:

(a) 4.98x10⁻⁵

(b) 7.89x10⁻⁶

(c) 1.89x10⁻⁴

(d) 0.5

(e) 2.9x10⁻²  

Step-by-step explanation:  

The probability (P) to find the particle is given by:

P=\int_{x_{1}}^{x_{2}}(\Psi\cdot \Psi) dx = \int_{x_{1}}^{x_{2}} ((2/L)^{1/2} Sin(\pi x/L))^{2}dx  

P = \int_{x_{1}}^{x_{2}} (2/L) Sin^{2}(\pi x/L)dx     (1)

The solution of the intregral of equation (1) is:

P=\frac{2}{L} [\frac{X}{2} - \frac{Sin(2\pi x/L)}{4\pi /L}]|_{x_{1}}^{x_{2}}  

(a) The probability to find the particle between x = 4.95 nm and 5.05 nm is:

P=\frac{2}{100} [\frac{X}{2} - \frac{Sin(2\pi x/100)}{4\pi /100}]|_{4.95}^{5.05} = 4.98 \cdot 10^{-5}    

(b) The probability to find the particle between x = 1.95 nm and 2.05 nm is:

P=\frac{2}{100} [\frac{X}{2} - \frac{Sin(2\pi x/100)}{4\pi /100}]|_{1.95}^{2.05} = 7.89 \cdot 10^{-6}  

(c) The probability to find the particle between x = 9.90 nm and 10.00 nm is:

P=\frac{2}{100} [\frac{X}{2} - \frac{Sin(2\pi x/100)}{4\pi /100}]|_{9.90}^{10.00} = 1.89 \cdot 10^{-4}    

(d) The probability to find the particle in the right half of the box, that is to say, between x = 0 nm and 50 nm is:

P=\frac{2}{100} [\frac{X}{2} - \frac{Sin(2\pi x/100)}{4\pi /100}]|_{0}^{50.00} = 0.5

(e) The probability to find the particle in the central third of the box, that is to say, between x = 0 nm and 100/6 nm is:

P=\frac{2}{100} [\frac{X}{2} - \frac{Sin(2\pi x/100)}{4\pi /100}]|_{0}^{16.7} = 2.9 \cdot 10^{-2}

I hope it helps you!

3 0
4 years ago
When sara got to the store they sold water in gallon containers how many gallons should she buy?
sashaice [31]

Answer:

It depends how much water she would like to buy!

Step-by-step explanation:

Ⓗⓘ ⓣⓗⓔⓡⓔ

Well, it all depends how much water she would like to buy! ^u^

(っ◔◡◔)っ ♥ Hope this helped! Have a great day! :) ♥

Please, please give brainliest, it would be greatly appreciated, I only need one more before I advance, thanks!

5 0
3 years ago
Triangle ABC is similar to triangle FGH.
Ivan

Answer:

i can't understand the question but if you put a link I can figure it out

8 0
3 years ago
In parallelogram ABCD, diagonals AC------- and BD------- intersect at point E, AE = x + 16, and CE=5x
Nataly [62]

Answer:

AC = 40

Step-by-step explanation:

A quadrilateral is a polygon shape with four sides and four angles. The interior angle of a quadrilateral sums up to 360°.

A parallelogram is a quadrilateral (has four sides and four angles) in which has two pair of opposite sides are parallel to each other. The diagonals of a parallelogram bisect each other.

Given parallelogram ABCD:

Diagonals AC and BD bisect each other at point E. Hence:

AC = AE + CE (line segment addition postulate)

Also:

AE = CE (diagonal BD bisects AC at point E).

Hence; x + 16 = 5x

5x - x = 16

4x = 16

x = 4

AE = x + 16 = 4 + 16 = 20; CE= 5x = 5(4) = 20

AC = AE + CE = 20+ 20 = 40

3 0
3 years ago
Other questions:
  • Solve, using linear combination. <br> 5x + y = 2 <br> 4x + y = 4
    6·1 answer
  • Estimats of 33 divided by 291
    5·2 answers
  • Pouvez vous maider pour la questuon deux merci
    7·1 answer
  • Which angle is the smallest?
    9·1 answer
  • A store manager pays $40 for a shirt and adds a markup
    10·1 answer
  • If A= and B= , find BA
    7·1 answer
  • the population density of Montana is 6.699 people per square mile what is the population density per square mile of Montana roun
    11·1 answer
  • How to you find the area of a triangle?
    13·2 answers
  • You randomly draw twice from this deck of cards
    8·1 answer
  • After a wholesaler adds a markup of $125 to a stereo, it is sold for $320. What is the cost of the stereo?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!