I see the question last and the 4 choices first.
Look at the points you have in the table with the question.
(0, 0), (4, 2), (9, 3)
The only graph that contains those three points is the second option.
Answer: 
Step-by-step explanation:
total sides = 6
p (rolling a 1) = 
p (rolling a 2) = 
Note:
or - add
and - multiply
∴ 
∴ 
hence, p (rolling a 1 or 2) = 
They should be the same since it’s congruent ??
Area = pi*r^2
Circumference = 2pi*r
Step 1: find the radius from area
81pi=pi*r^2
81=r^2
9=r
Step 2: plug in radius to the circumference equation
Circumference = 2pi*r
18pi is the answer, otherwise know as 56.52 as well.
Answer:
See explanation.
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
<u>Algebra I</u>
Functions
- Exponential Property [Rewrite]:

- Exponential Property [Root Rewrite]:
![\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Csqrt%5Bn%5D%7Bx%7D%20%3D%20x%5E%7B%5Cfrac%7B1%7D%7Bn%7D%7D)
<u>Calculus</u>
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]: ![\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bcf%28x%29%5D%20%3D%20c%20%5Ccdot%20f%27%28x%29)
Derivative Property [Addition/Subtraction]: ![\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%20%2B%20g%28x%29%5D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28x%29%5D%20%2B%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bg%28x%29%5D)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Derivative Rule [Chain Rule]: ![\displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Step-by-step explanation:
We are given the following and are trying to find the second derivative at <em>x</em> = 2:


We can differentiate the 1st derivative to obtain the 2nd derivative. Let's start by rewriting the 1st derivative:

When we differentiate this, we must follow the Chain Rule: ![\displaystyle \frac{d^2y}{dx^2} = \frac{d}{dx} \Big[ 6(x^2 + 3y^2)^\big{\frac{1}{2}} \Big] \cdot \frac{d}{dx} \Big[ (x^2 + 3y^2) \Big]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%5E2y%7D%7Bdx%5E2%7D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5CBig%5B%206%28x%5E2%20%2B%203y%5E2%29%5E%5Cbig%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5CBig%5D%20%5Ccdot%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5CBig%5B%20%28x%5E2%20%2B%203y%5E2%29%20%5CBig%5D)
Use the Basic Power Rule:

We know that y' is the notation for the 1st derivative. Substitute in the 1st derivative equation:
![\displaystyle \frac{d^2y}{dx^2} = 3(x^2 + 3y^2)^\big{\frac{-1}{2}} \big[ 2x + 6y(6\sqrt{x^2 + 3y^2}) \big]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%5E2y%7D%7Bdx%5E2%7D%20%3D%203%28x%5E2%20%2B%203y%5E2%29%5E%5Cbig%7B%5Cfrac%7B-1%7D%7B2%7D%7D%20%5Cbig%5B%202x%20%2B%206y%286%5Csqrt%7Bx%5E2%20%2B%203y%5E2%7D%29%20%5Cbig%5D)
Simplifying it, we have:
![\displaystyle \frac{d^2y}{dx^2} = 3(x^2 + 3y^2)^\big{\frac{-1}{2}} \big[ 2x + 36y\sqrt{x^2 + 3y^2} \big]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%5E2y%7D%7Bdx%5E2%7D%20%3D%203%28x%5E2%20%2B%203y%5E2%29%5E%5Cbig%7B%5Cfrac%7B-1%7D%7B2%7D%7D%20%5Cbig%5B%202x%20%2B%2036y%5Csqrt%7Bx%5E2%20%2B%203y%5E2%7D%20%5Cbig%5D)
We can rewrite the 2nd derivative using exponential rules:
![\displaystyle \frac{d^2y}{dx^2} = \frac{3\big[ 2x + 36y\sqrt{x^2 + 3y^2} \big]}{\sqrt{x^2 + 3y^2}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%5E2y%7D%7Bdx%5E2%7D%20%3D%20%5Cfrac%7B3%5Cbig%5B%202x%20%2B%2036y%5Csqrt%7Bx%5E2%20%2B%203y%5E2%7D%20%5Cbig%5D%7D%7B%5Csqrt%7Bx%5E2%20%2B%203y%5E2%7D%7D)
To evaluate the 2nd derivative at <em>x</em> = 2, simply substitute in <em>x</em> = 2 and the value f(2) = 2 into it:
![\displaystyle \frac{d^2y}{dx^2} \bigg| \limits_{x = 2} = \frac{3\big[ 2(2) + 36(2)\sqrt{2^2 + 3(2)^2} \big]}{\sqrt{2^2 + 3(2)^2}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%5E2y%7D%7Bdx%5E2%7D%20%5Cbigg%7C%20%5Climits_%7Bx%20%3D%202%7D%20%3D%20%5Cfrac%7B3%5Cbig%5B%202%282%29%20%2B%2036%282%29%5Csqrt%7B2%5E2%20%2B%203%282%29%5E2%7D%20%5Cbig%5D%7D%7B%5Csqrt%7B2%5E2%20%2B%203%282%29%5E2%7D%7D)
When we evaluate this using order of operations, we should obtain our answer:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation